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1 Introduction

Recent empirical evidence from the last European debt crisis indicates that sudden changes

in creditors’ beliefs about governments’ repayment capacity can influence the likelihood

of defaults. During the crisis, the European Central Bank announced a liquidity support

program (Outright Monetary Transactions) to address the rise in bond yields volatility that

was disconnected from changes in economic fundamentals. After the announcement, a large

decline in yields occurred even though the liquidity support was not used —see Figure 1.

This evidence suggests that the promise of liquidity itself could have brought calm to the

markets, thus showing a link between the likelihood of default and creditors’beliefs about

governments’ debt repayment capacity. Using a self-fulfilling debt crises model, several

studies have explained this link with a focus on governments’repayment capacity of short-

term debt (Cole and Kehoe, 1996, 2000; Conesa and Kehoe, 2017). However, the study of

this link with a focus on governments’ repayment capacity of long-term debt has largely

remained unexplored.

In this paper, we study the impact of long-term debt in a model of self-fulfilling debt

crises. The main goal is to analyze how the maturity structure of debt affects governments’

default decisions in a model of self-fulfilling debt crisis, and to understand its welfare impli-

cations. We show that holding the ratio of debt-over-GDP constant, governments’incentives

to default decrease as the maturity of debt increases. This is because a higher debt maturity

allows a government to roll over a lower fraction of debt in each period, thus making the

government less exposed to negative shifts in expectations. We also show that this decrease

in governments’default incentives coming from long-term debt can increase the welfare of the

economy. Specifically, a government can decrease total debt to levels that are not vulnerable

to creditors’panic, in a shorter period of time compared to the short-term debt case.

The paper consists of two parts. In the first part, we build on an earlier work of Cole

and Kehoe (2000) and consider a model of self-fulfilling debt crises featuring short-term

debt in a small open economy. A government which maximizes households’welfare chooses

spending on a consumption good, issues one-period bonds, and has access to a competitive

international credit market. In every period, given the bonds’price, the government first

chooses how much debt to sell, and then decides how much to spend and whether to default or

not. Upon default, the government is permanently excluded from the bond market, and seizes

a share of the economy’s endowment thereafter. In this set-up, we first show that there can be

an interval of debt levels in which repayment or default are rational expectations equilibria

(the Crisis region). Within this interval, a sunspot can suddenly trigger creditors’panic

and force the government to default, thus confirming creditors’negative initial expectations.
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When initial debt lies in the Crisis region, we analytically prove that the government tries to

avoid self-fulfilling debt crises by lowering its debt to reach an interval of debt levels where

government repayment is the only rational expectations equilibrium (the No-Default region).

We further show that the decrease in debt levels occurs in a fixed number of periods that

optimally depend on how large initial debt is within the Crisis region.

In the second part of the paper, we consider a model of self-fulfilling debt crises using debt

of higher maturity in the form of coupon-paying bonds. This definition of long-term debt in

line with Hatchondo and Martinez (2009) assumes that creditors receive an infinite stream of

coupon payments that geometrically decrease with time. The key aspect of long-term debt

in the form of a coupon-paying bond is that it lowers the amount of debt maturing in each

period, and therefore allocates the repayment of total debt more evenly across time. Also,

this definition of long-term debt explicitly introduces credit market freezes. In this set-up,

we first study how the structure of the equilibrium price of debt changes compared to the

short-term debt scenario, and analyze the change in the bounds of the Crisis region under

long-term debt. In particular, we show that these bounds increase as debt maturity rises,

shifting upward the Crisis region relative to the one-period bond case. The intuition is that

coupon payments divide the repayment of total debt in many periods, and since government

incentives to default on less maturing debt decrease, creditors now expect default to occur

only at higher levels of total debt. Second, we numerically investigate the implications of

long-term debt in this model and compare it to the short-term debt scenario. Specifically,
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we describe how the presence of long-term debt shortens the time in which the government

decreases any initial debt starting in the Crisis region. Finally, we numerically show that total

utility in this model can be higher when the government issues long-term bonds. Intuitively,

the fastest the government exits the Crisis region, the less it discounts the payoff attained

in the No-Default region. These findings, therefore, suggest that lengthening debt maturity

can improve an economy’s welfare.

Related literature. This paper contributes to the literature on self-fulfilling debt crises.

Two seminal papers of Cole and Kehoe (1996, 2000) explore governments’incentives to repu-

diate debt when default choices take place after borrowing. They characterize an interval of

debt levels (the Crisis region) where creditor’s panic can force the government to default, even

with unchanged economic fundamentals. The authors analytically show that the government

can optimally reduce debt levels in order to avoid this type of crises. This framework with

coordination failures has been explored by several other works in the literature to explore

options that governments have to escape Crisis region. For example, Conesa and Kehoe

(2017) extend Cole and Kehoe’s environment allowing a government to ‘gamble for redemp-

tion’, namely, to wait for an economic recovery while keeping large debt levels in the Crisis

region. Roch and Uhlig (2018) analyze the impact of a bailout agency in the probabilities of

sovereign default. More recently, Szkup (2022) uses global games to explore how austerity

and fiscal stimulus affect the probability of self-fulfilling debt crises, and Aguiar et al. (2022)

quantitatively study how governments can prevent default by auctioning bonds at low prices.

In line with these models, this paper contributes to the literature of self-fulfilling debt crises

by analyzing the impact that the management of debt maturity can have on welfare.

This paper relates to the extensive literature on endogenous default started by Eaton and

Gersovitz (1981). For example, Aguiar and Gopinath (2006) and Arellano (2008) explore the

link between an economy’s macroeconomic variables and the probability of sovereign default.

Hatchondo and Martinez (2009) and Arellano and Ramanarayanan (2012) introduce different

debt maturities to interact them with a government’s default choice. In these papers, crises

happen as a result of poor economic fundamentals. On the contrary, in this paper we adopt

the self-fulfilling debt crises approach from Cole and Kehoe (2000) to analyze the role of

debt maturity.

This paper also relates to the sovereign default literature that explores different specifi-

cations of debt maturity. Niepelt (2014) uses long-term debt with a bond that matures in

two periods. In contrast, Hatchondo and Martinez (2009) model long-term debt with a bond

that pays coupons that decay at a fixed rate over time. This bond specification renders a

tractable state-space, and is the definition of debt that we will use in our paper. Other works
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also implemented a similar bond structure. Arellano and Ramanarayanan (2012) combine

the bond specification from Hatchondo and Martinez (2009) with a one-period bond. Chat-

terjee and Eyigungor (2012) define a bond that either matures or pays a coupon with some

fixed probability in each period. In more recent works, Aguiar et al. (2022) and Roch and

Uhlig (2018) also feature long-term bonds with infinite coupon payments.

The paper proceeds as follows. Section 2 outlines the set-up of the model under short-

term debt. Section 3 characterizes a Crisis region and analyzes an optimal debt policy to exit

it. The model with long-term debt is introduced in Section 4. Section 5 presents the Crisis

region and illustrates government optimal decisions under this new type of debt. Section 6

provides a numerical example of the welfare changes under short-term and long-term debt.

Concluding remarks are outlined in Section 7. Proofs are relegated to the Appendix.

2 Baseline Model

2.1 Setup

The following model setup and notation follows Cole and Kehoe (2000) very closely. Consider

a government in a small open economy inhabited by a continuum of identical households.

Households live infinite periods and are uniformly distributed over the [0, 1] interval. The

government maximizes households’utility

E0

∞∑
t=0

βtu (gt) ,

where gt is government spending, β ∈ (0, 1) the discount factor, and u (·) satisfies u′ (·) > 0,

u′′ (·) < 0 and u (0)→ −∞.
The economy receives a deterministic sequence of endowments (see Conesa and Kehoe

(2017)),

Z1−zty =

{
y, zt = 1

Zy, zt = 0
,

where y is a positive constant, Z ∈ (0, 1) is the share of output that is left after a default

episode, and zt reflects the default decision of the government. When the government defaults

on its obligations, zt = 0; otherwise, zt stays at 1. In the state space, z−1 reflects whether

the government defaulted on its debt before; if that happened, z−1 remains at 0 forever. The

government has access to the international credit market only if it did not default in the

past. The international credit market is competitive, and has risk-neutral lenders who buy

bonds and have finite wealth. Lenders and the government take the price of a bond qt as
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given. If the government never defaulted before, it starts each period with a positive amount

of maturing debt Bt. Thereafter, the government chooses gt, sells Bt+1 one-period bonds at

price qt to finance its expenditures, and decides whether to repay or not its maturing debt

Bt.

The budget constraint of the government is

gt + ztBt = Z1−zty + qtBt+1.

Agents in the model observe the realization of a sunspot ζt in every period. This random

variable ζt is independent and identically distributed with uniform CDF on the unit interval

[0, 1]. The sunspot, together with the current maturing debt and the government past default

decisions, define the aggregate state st in this economy, st = (Bt, z−1, ζt).

The timing within a period is as follows. The government and the creditors observe the

aggregate state of the economy st. Taking the price qt as given and if no default occurred

before, the government issues Bt+1 bonds and the creditors purchase that quantity. At the

end, the government makes its default and spending decisions, zt and gt. It is worth noting

that the default decision occurs after borrowing in this timing, in contrast to models of

sovereign default where the borrowing decision occurs after default and impede belief-driven

crises.(see Arellano, 2008; Arellano and Ramanarayanan, 2012; Hatchondo and Martinez,

2009)

2.2 An equilibrium with short-term debt

This section describes the government value function and the price of debt that define an

equilibrium in the model.

Government value function. Given the aggregate state st, the government chooses
gt, Bt+1, and zt in two stages within each period. Conditional on no previous default, the

value when the government first decides how much to borrow from the international credit

market is given by

V (s) = max
B′

u (g) + βEV (s′) (1)

s.t. g + zB = Z1−zy + q (s, B′)B′

z = z (s, B′, q (s, B′))

g = g (s, B′, q (s, B′))

s′ = (B′, z, ζ ′) ,
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with optimal policy function B′ (s). When B′ (s) increases, default becomes more likely and

the equilibrium price decreases. This drop in q will act as a no-Ponzi-game condition in

problem (1), preventing large borrowings from the government.

In the second stage, the government makes its default and spending decisions,

max
g,z

u (g) + βEV (s′) (2)

s.t. g + zB = Z1−zy + q (s, B′)B′

z = 1 or z = 0

s′ = (B′, z, ζ ′) .

It is immediate to observe that policy functions z (s, B′, q (·)) and g (s, B′, q (·)) from problem
(2) depend on the choice of B′. In the next sections, we will use this feature to solve the

government problem using a backward induction logic.

Price of debt. The government borrows money from a competitive international credit
market. Creditors in this market discount at the same rate as the government, and β =

1/ (1 + r), with r being a fixed interest rate. Hence, the equilibrium price satisfies

q (s, B′) = βE [z′ ((s′, B′ (s′) , q (s′, B′ (s′))))] . (3)

The price of a one-period bond equals the inverse of the gross interest rate, adjusted by

tomorrow’s expected probability of default, E [z′ (·)].
Using eqs. (1)-(3), an equilibrium under short-term debt is defined as follows:

Definition 1 (Short-term debt) Given an initial stock of debt B0, and a given repayment
decision from the past z−1, a recursive equilibrium with short-term debt is a government value

function V (s); government policy functions B′ (s), g (s, B′, q (·)), and z (s, B′, q (·)); and a
price function q (s, B′) such that:

1. Given g (s, B′, q (·)), z (s, B′, q (·)) and q (s, B′), the government policy function B′ (s)

maximizes the value function V (s) represented by the government problem (1).

2. Given the value function V (s) and the price q (s, B′), policy functions g (s, B′, q (·))
and z (s, B′, q (·)) solve the second government’s problem represented by equation (2).

3. The price q (s, B′) at which the government borrows from the international credit mar-

ket satisfies (expected) zero profits of competitive risk-neutral creditors (equation (3)).
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3 The Crisis region under short-term debt

We now define different regions of debt related to the previous definition of a sunspot equilib-

rium. Then, we present two conditions defining bounds of these regions. Finally, we provide

a numerical illustration of these regions and describe optimal debt policies for the govern-

ment. Our exposition (including propositions, proofs and figures) follow Cole and Kehoe

(2000) very closely.

3.1 Debt regions

Two thresholds B and B̄ characterize debt regions with different equilibrium outcomes for

the model economy.1 For debt levels B below B, the No-Default region defines an interval of

debt where the government always chooses to repay its obligations. In contrast, debt levels B

above B̄ define a Default region where the government optimally chooses to default. Finally,

starting from a debt level B ≤ B and as B increases, debt levels pass through an interval[
B, B̄

]
called the Crisis region where both equilibrium outcomes can occur with positive

probability. When debt lies in this region, creditors expect default to occur with a fixed

probability π, and the sunspot ζ becomes a coordination device among them. Specifically,

if ζ ≤ π, the sunspot signals that the government will default, and therefore creditors stop

lending. As a result, q drops to 0, and the government defaults because it cannot roll over

its debt. Conversely, if ζ > π, creditors expect the government to repay, and therefore q

remains positive and provides liquidity to the government.

3.2 The optimal price q under short-term debt

If the government always repaid (i.e., z−1 = 1), then the government and creditors trade

bonds at the equilibrium price

q ((B, 1, ζ) , B′) =


β, if B′ ≤ B

β̂, if B < B′ ≤ B̄

0, if B̄ < B′
, (4)

with β̂ = β (1− π). The equilibrium price (4) reflects the government choices of B′ (the first

decision of the government). When B′ is above B̄, creditors expect default to occur with

probability 1, and therefore q = 0. When B′ is below B, creditors expect the government to

1Bound B̄ will depend on π, i.e. B̄ = B̄ (π). For notational convenience, we omit this dependence
whenever possible.
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default with probability 0, and q = β. Otherwise, when tomorrow’s debt lies within
[
B, B̄

]
,

creditors expect default to occur with a fixed probability π, implying that q = β̂.2

3.3 Determining the region boundaries

We now present the conditions that characterize both thresholds B and B̄. Following the

literature, we take t = 0 to be the first period.

The No-Lending Condition (NLC) states that the government strictly prefers to default

instead of repaying maturing debt when the price of debt is 0. Analytically, this implies

V D (s, 0, 0) > V R (s, 0, 0) , (5)

where V R (·) is the value of repayment and V D (·) is the value function under default. In-
tuitively, the NLC suggests that the government defaults instead of repaying debt when it

does not obtain any liquidity from the credit market. Therefore, when q = 0, the govern-

ment choice of B′ becomes trivial and assumed to be 0. Finally, the equality of equation (5)

characterizes the lower bound B of the Crisis region.

The Participation Constraint (PC) states the condition for the government to always

prefer repayment versus default,

V R (s, B′, q) ≥ V D (s, B′, q) . (6)

This expression states that the government prefers to honour its debts when the value of

repayment V R (·), is greater than defaulting and becoming excluded from the credit market,
V D (·). The equality of equation (6) characterizes the upper bound B̄ of the Crisis region,

and the government prefers default at any debt level above B̄.

3.4 Characterization of the lower bound of the Crisis region

If the government chooses to default at t, the government budget constraint in that period

is

g = Zy + q (s, B′)B′.

After default, the government only finances spending with a share Z of total output y, and

loses access to the international credit market. Therefore, the budget constraint from t + 1

2See Section A.1 of the Appendix for the calculation of equation (4).
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onward is simply g = Zy. The value of default for any price q is therefore given by

V D (s, B′, q) = u (Zy + q (s, B′)B′) + β
u (Zy)

1− β . (7)

Setting q = 0 in the last expression leads to the left-hand side of the No-Lending Condition

(5),

V D (s, 0, 0) =
u (Zy)

1− β . (8)

To compute the right-hand side of the NLC, the budget constraint at t when the govern-

ment still repays but q = 0 is g = y−B. Thereafter, the government finances spending with
total output (i.e., g = y) and V R (·) in the No-Lending Condition (5) renders

V R (s, 0, 0) = u (y −B) + β
u (y)

1− β . (9)

After replacing eqs. (8) and (9) in the NLC (5), the lower bound B of the Crisis region is

the debt level such that expression

u (Zy)

1− β > u (y −B) + β
u (y)

1− β (10)

holds with equality. In Section A.2 of the Appendix, Lemma 6 characterizes the existence

and uniqueness of B.

3.5 Characterization of the upper bound B̄ of the Crisis region

The right-hand side of the Participation Constraint (6) follows immediately from equation

(7). When government debt B′ lies in the Crisis region, the value of defaulting today is

V D (s, B′, q) = u
(
Zy + β̂B′

)
+ β

u (Zy)

1− β ,

where the equilibrium price of debt is now q = β̂.

To obtain the left-hand side of the Participation Constraint (6), the value of repayment

depends on different paths of borrowing that the government can choose in the Crisis region.

In particular, the government can decide to lower debt in T arbitrary periods, or also choose

to never run down debt, i.e. T → ∞. We will therefore compute V R (s, B′, q) describing

the optimal choice of {Bt+1} by dividing the government problem in two parts, first when

government debt is in the Crisis region, and second when debt is in the No-Default region.

Specifically, in the first part, initial debt B0 starts in the Crisis region at t = 0, and the
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government exits the Crisis region in T periods by choosing an optimal path {Bt+1}T−1t=0 . In

the second part, the government begins already at the No-Default region, and starting from

t = T it will choose the optimal path of debt {Bt+1}∞t=T . In what follows, we use a backward
induction logic and start from the second problem.

Assume that the government never defaulted in the past (z−1 = 1). The government

problem after reaching the No-Default region in T periods and starting with an initial debt

level BT = B is given by

max
{Bs+1}∞s=T ,
{gs}∞s=T

∞∑
s=T

βsu (gs) (11)

s.t. gs +Bs = y + qsBs+1 ∀s ≥ T

BT = B given

Bs ≤ B ∀s ≥ T .

(Refer to Section A.3 of the Appendix for the full solution.)

The Euler Equation

u′ (gt) = u′ (gt+1)

states that the government smooths gt across periods and attains a constant level of spending

ḡ = y − (1− β)B.

Since the government’s optimal choice of debt remains at B for every period t = T, T +

1, T + 2, ..., the present value from smooth spending renders

u (y − (1− β)B)

1− β ,

and represents the government’s continuation payoff after reaching the No-Default region.

Equipped with the previous result, we now turn to the first part of the government

problem. Starting at t = 0 and with a given debt level B0 in the Crisis region, the government

lowers debt in T periods to reach the No-Default region. Hence, the total payoff V T (B0)

from lowering debt in T ≥ 2 periods is3

V T (B0) = max
{Bt+1}T−1t=0 ,

{gt}T−1t=0

T−1∑
t=0

β̂
t
u (gt) + β̂

T−1
β
u (y − (1− β)B)

1− β +

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β (12)

3Refer to the Appendix for the full calculation of V T (B0) (Section A.3.2), the Euler Equation (Section
A.3.3), and the calculation of gT (B0) (Section A.3.4). Note that when T = 1, the government jumps from
B0 to B and exits the Crisis region. Since no intermediate choice of {Bt+1} takes place during the transition,
we omit writing this case here, and relegate its details to the Appendix (Section A.3.2).
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s.t. gt = y −Bt + qtBt+1 ∀t = 0, 1, ..., T − 2

gt = y −Bt + qtB t = T − 1

qt = βEt [zt+1]

B0, B given, z−1 = 1.

The first two terms in equation (12) show the government’s payoffwhen the sunspot does not

trigger government default. With probability 1− π, the (discounted) value of lowering Bt+1

yields a utility of u (gt) in each period t ≤ T−1, and the government achieves the continuation

payoff u (y − (1− β)B) from t ≥ T onward. Conversely, the last term in equation (12)

captures the payoff from following a policy T when the sunspot triggers government default.

Specifically, the government is subject to the realization of a self-fulfilling debt crisis with

probability π in every period it remains in the Crisis region. When that is the case, it can

only spend Zy.

Maximization of expression (12) renders the same Euler Equation as before, u′ (gt) =

u′ (gt+1), implying that government spending is constant during the transition. Following

the literature, gt = gT (B0) denotes the optimal level of government spending given B0 and

the chosen policy T . Replacing each gT (B0) in the T budget constraints, the optimal level

gT (B0) is given by

gT (B0) = y −
[

1− β̂
1− β̂T

]
B0 +

[
1− β̂

1− β̂T

]
β̂
T−1

βB, (13)

and the value function associated to problem (12) when the government runs down debt in

T periods is

V T (B0) =

[
1− β̂T

1− β̂

]
u
(
gT (B0)

)
+ β̂

T−1
β
u (ḡ)

1− β +

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β . (14)

This last expression (14) captures the value function for any policy T . Additionally, taking

the limit as T →∞ in expressions (13) and (14) yields the value when the government never

lowers initial debt B0,

V ∞ (B0) =
u
(
y −

(
1− β̂

)
B0

)
1− β̂

+
βπu (Zy)

(1− β)
(

1− β̂
) .

Finally, we define the maximum across every payoff V T (B0) when T = 1, 2, ...,∞ as the

left-hand side of the Participation Constraint (6), and obtain the final expression of the PC
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as

max
{
V 1 (B0) , V

2 (B0) , ..., V
∞ (B0)

}
≥ u

(
Zy + β̂B0

)
+ β

u (Zy)

1− β . (15)

As before, the upper bound of the Crisis region is the debt level B̄ such that expression (15)

holds with equality.

3.6 Crisis equilibria under short-term debt

From the last section, equations (10) and (15) characterized the lower and the upper bounds

of the Crisis region respectively. In what follows, we numerically show Crisis regions for

different default probabilities. With a similar approach to Cole and Kehoe (2000), we first

compute the Crisis region in an equilibrium where the sunspot channel is switched off, i.e.,

π = 0. This equilibrium is called a zero-probability crisis equilibrium. Then, we compute a

Crisis region under strictly positive creditors’beliefs π. Finally, we present analytical and

numerical results on the government optimal debt policies.4

A zero-probability crisis equilibrium. When creditors’belief of default π becomes
smaller, the government’s incentives to run down debt decrease. Intuitively, the government

must prefer to roll over its total initial debt when lenders never expect default, i.e. π →
0. Analytically, this implies that V ∞ should strictly dominate any other payoff V T (with

T <∞) in the LHS of the Participation Constraint (15). In Section A.3.5 of the Appendix,
Lemma 8 proves this argument, and therefore the Participation Constraint (15) under a

zero-probability crisis equilibrium becomes

u (y − (1− β)B0)

1− β ≥ u (Zy + βB0) + β
u (Zy)

1− β . (16)

Finally, Lemmas 6 and 9 establish existence and uniqueness of debt levels B and B̄ satisfying

eqs. (10) and (16) at equality.

Rewriting the No-Lending Condition (10) and the Participation Constraint (15) as

UNLC (B) ≡ u (y −B) + β

[
u (y)

1− β

]
− u (Zy)

1− β

Uπ=0
PC (B) ≡ u (y − (1− β)B)

1− β − u (Zy + βB)− βu (Zy)

1− β ,

we observe that as debt levels increase, both curves monotonically decrease and cross the

4For ease of exposition, we will focus on stationary debt policies when characterizing the Crisis region.
For further details on the stationarity of debt policies, refer to the discussion in Cole and Kehoe (2000).
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0-line once. Section A.3.6 of the Appendix analyzes functions UNLC (B) and Uπ=0
PC (B) on

the domain of B.

Figure 2 plots the Uπ=0
PC (B) and the UNLC (B)) as B increases. The government utility

is u (gt) = log (gt). In addition, constant output y is set at 10, while the share of remaining

output after default is Z = 0.9. The discount parameter is β = 0.96 , and the probability of

default π is set to 0. The Crisis region is characterized by the curves Uπ=0
PC (B) and UNLC (B)

where debt levels B satisfy Uπ=0
PC (B) ≥ 0 ≥ UNLC (B). In the particular example of Figure

2, the interval of debt levels where the sunspot ζt triggers self-fulfilling debt crises (with

probability π = 0) is B ∈ [9.28, 15.9].

A positive-probability crisis equilibrium. We now compute a nonempty Crisis

region where self-fulfilling debt crises occur with positive probability, i.e. π > 0. Using

V ∞ (B0), we rewrite the Participation Constraint (15) as

Uπ>0
PC (B) ≡

u
(
y −

(
1− β̂

)
B
)

1− β̂
+

βπ

1− β̂
u (Zy)

1− β − u
(
Zy + β̂B

)
− βu (Zy)

1− β .

In Section A.3.7 of the Appendix, we show that Uπ>0
PC (B) starts positive at B = 0 and

monotonically decreases crossing the 0 line as B rises. Since the No-Lending Condition
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(10) is independent from π, Uπ>0
NLC (B) = UNLC (B) ∀π ∈ [0, 1], and therefore has the same

behavior as before.

As creditor’s default belief π increases, Figure 3 illustrates how the upper bound B̄ (π)

decreases relative to B̄ (0). In Section A.3.8 of the Appendix, Lemma 11 analytically proves

that dB̄ (π) /dπ < 0. This result implies that some debt levels below the upper bound B̄ (0)

strictly violate the Participation Constraint (15) when π > 0, thus making B̄ (π) < B̄ (0).

Intuitively, when π rises, creditors believe that some debt levels are now too large to be

honoured, thus expecting the government to default for sure at these debt levels. Also, the

government now prefers to default at large debt levels B and collect β̂B, instead of facing

creditors’panic with probability π and collect 0. These interaction ultimately increases the

interval where the government defaults with certainty, lowering the upper bound B̄ of the

Crisis region.

Moreover, when π > 0 and initial debt is not very large, it is intuitive that the government

optimally evaluates policies to escape the Crisis region. As the next Proposition shows, the

government will choose different optimal policies for {Bt+1}, depending on the initial debt
when π > 0. This result has been established by Cole and Kehoe (2000) and is one of the

most relevant findings in their paper. In Section A.3.9 in the Appendix, we analytically

prove the most important parts of their Proposition applied to our version of the model.
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Proposition 2 Let V T (B0) be the government’s payoff when its policy is to lower its debt

to B in T periods. Then for any B0 < B (π) there exists a T ∗ (B0) ∈ {1, 2, ...,∞} that
maximizes {V 1 (B0) , V

2 (B0) , ..., V
∞ (B0)}. Moreover, for π close to 0, there are necessary

regions of B0 with the full range of possibilities T ∗ (B0) = 1, 2, ...,∞.

Proof. See Appendix.
When π > 0 and B0 lies in the Crisis region, government’s default and repayment deci-

sions ultimately depend on the realization of the random variable ζt. When this is the case,

the result in Proposition 2 states that the government optimally chooses to exit the Crisis

region in T ∗ (B0) periods. Furthermore, this result also states that for a small positive π, the

Crisis region can be divided into different intervals of debt where the government optimally

sets a different T ∗ (B0), with T ∗ (B0) = 1, 2, ...,∞. To understand the intuition behind,
recall that the government knows that the sunspot triggers default when B0 ∈

[
B, B̄ (π)

]
.

Proposition 2, therefore, states that the government can optimally choose to exit the Crisis

region to avoid being subject to creditors’beliefs.

At a different initial B0 in the Crisis region, Figure 4 depicts three optimal debt policies

when self-fulfilling debt crises occur with positive probability. When B0 is close to B, the

government lowers debt faster than when B0 approaches B̄ —see, for example, the lower

optimal path for {Bt+1} when T ∗ (B0) = 5. As B0 increases, government debt is further
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from the No-Default region, and Proposition 2 establishes that the optimal T ∗ (B0) does

not decrease. The government then faces the following trade-off: on the one hand, the

fastest it reaches the No-Default region, the lower the probability that the sunspot triggers

default. On the other hand, a sharp decline in debt Bt+1 leads to lower government spending.

Furthermore, initial per-period utility levels u (·) are more valuable because of discounting.
To balance these gains and losses when B0 rises, Proposition 2 states that the government

can only delay its exit from the Crisis region, i.e. increase T ∗ (B0). Examples of these optimal

choices are depicted by the middle and uppermost paths of {Bt+1}, with T ∗ (B0) = 10 and

T ∗ (B0) = 15 respectively.

To better illustrate these effects, we take the difference between two value functions at

T and T + 1 for a given B0 ∈
(
B, B̄ (π)

)
,

V T (B0)− V T+1 (B0) =
1− β̂T

1− β̂
[
u
(
gT (B0)

)
− u

(
gT+1 (B0)

)]
+ β̂

T [
u (ḡ)− u

(
gT+1

)]
+
β̂
T−1

βπ

1− β [u (ḡ)− u (Zy)] .

The first term in brackets represents the loss associated to plan T versus T + 1. In

Section A.3.10, Claim 13 shows that gT (B0) < gT+1 (B0). This means that government

spending is higher when the government smooths g across more periods. Intuitively, when

the government delays exiting the Crisis region from T to T + 1, it allocates the decrease of

initial B0 into more periods. This implies that government spending is relatively higher at

T+1 than at T . In contrast, the second and third terms represent the government gains from

choosing T . Lemma 12 in Section A.3.9 in the Appendix shows that spending ḡ is always

bigger than gT for any finite T . In particular, u (ḡ)−u(gT+1) is the benefit from attaining the

No-Default region earlier given policy T (which is faster than T + 1). Finally, the difference

u (ḡ) − u (Zy) captures the relative gain once government spending reaches the constant

level ḡ. The higher is u (ḡ) relative to u (Zy), the higher are the government’s incentives to

exit the Crisis region soon. Not surprisingly, this term increases as the transition T becomes

shorter: the earlier the government arrives at B, the lower will be the impact of discounting

on this term.

Some comparative statics. We analyze how the amount of output left after a default,
Z, affects the bound of the Crisis region and the government value function.

Proposition 3 An increase in Z (i) strictly decreases both bounds B and B̄ (π) of the Crisis

region, (ii) strictly decreases the value of running down debt in one period V 1 (B0), and (iii)
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strictly increases the value of debt roll over V ∞ (B0).

Proof. See Appendix.
Result (i) states that the lower and upper bounds of the Crisis region, B and B̄, are

decreasing in Z,

∂B

∂Z
= −

u′(Zy)
1−β y

u′ (y −B)
< 0 ,

∂B̄ (π)

∂Z
= −

β u
′(Zy)y
1−β

[
1− π

1−β̂

]
+ u′

(
Zy + β̂B̄

)
y

u′
(
y −

(
1− β̂

)
B̄
)

+ u′
(
Zy + β̂B̄

)
β̂
< 0.

To understand the intuition behind the first expression, assume that Z0 < Z1. When Z rises

from Z0 to Z1, a default event reduces the economy’s output by less. This, in turn, improves

the default outcome for the government for every debt level. In response to that, rational

creditors have to attribute a default probability π to more debt levels below the initial

B (Z0). Intuitively, creditors must expect that the government has less incentives to repay

after the government’s default scenario becomes better. Therefore, the lower bound of the

Crisis region needs to decrease to define a new threshold B (Z1), such that B (Z1) < B (Z0)

—below which creditors again expect repayment with probability 1 again.

A similar logic applies to the upper bound of the Crisis region. A rise in Z would only

improve the default scenario for the government. Since this increases the value V D, the

government has now greater incentives to default for any debt level. But if B̄ (π) remained

unchanged, creditors would still expect repayment of some levels of debt with probability

1− π, where the government now strictly prefers default. Therefore, rational creditors must
adjust their beliefs and assign probability 1 − π of repayment to lower debt levels, thus

decreasing B̄ (π) after Z rises.

For part (ii), observe that

dV 1

dZ
= β

∂B

∂Z
[u′ (g0)− u′ (ḡ)] < 0.

By (i), recall that ∂B/∂Z < 0. Hence, an increase in the output left post-default also

increases the distance between the initial stock of debt B0 and the lower bound of the No-

Default region, B (Z1). Because of this, debt levels Bt+1 have to be reduced by a larger

amount in order to attain the (now further) bound B (Z1). As a result, this effect lowers

total payoff V 1 (B0).

Part (iii) of the Proposition argues that when the optimal plan entails never running

down debt, the government’s payoff responds positively to an increase in the productivity

parameter Z.
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dV ∞ (B0)

dZ
=

βπu (Zy)(
1− β̂

)
(1− β)

y > 0

The last term of expression V ∞ (B) indicates that if the government is entitled to per-

manently keep its initial debt level, then it will always be vulnerable to self-fulfilling debt

crises. If the government is likely to default in every period, then the government’s payoff

can only rise if the bad outcome Zy increases.

4 A model with long-term debt

In this Section, we present the law of motion of long-term debt issuances. We then show

the government problem that enters into the new definition of a sunspot equilibrium under

long-term debt. In Section 6, we show the associated Crisis region and government optimal

choices of debt when bonds have long maturity.

4.1 Law of motion of long-term debt and new budget constraint

In the previous sections, we presented Crisis regions for π = 0 and π > 0, and described

optimal government policies under short-term debt. Here, we study how the above results

change after switching to long-term debt defined as in Hatchondo and Martinez (2009).

In this new set-up, it represents the issuance of long-term bonds at any period t. At

period 0, the government now starts with a given amount of outstanding bonds issued from

the past, i−1, and in every period t the government collects qtit after issuing it bonds. Also,

recall that under short-term debt, total outstanding debt was repaid in t + 1. In contrast

to this case, under long-term debt the government now repays coupons worth δn−1 in every

period t + n and n ≥ 1, where δ ∈ (0, 1) denotes the rate of geometric decrease of coupon

payments across time.

Conditional on no default, the government budget constraints for periods 0, 1, ..., t are

g0 + i−1 = y + q0i0

g1 + δi−1 + i0 = y + q1i1
...

gt + δti−1 + δt−1i0 + ...+ δit−2 + it−1 = y + qtit.

Calling Bt =
∑t−1

j=0 δ
t−j−1ij + δti−1 the stock of maturing debt (i.e., the total coupons due at
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t from past issuances), B0 equals i−1 and the budget constraint becomes

gt + ztBt = Z1−zty + qt (st,Bt+1) it ∀t. (17)

In addition, the law of motion describing it is

it = Bt+1 − ztBtδ. (18)

What equation (18) states is that (i) debt issuances depend on the default choice zt, and

(ii) it units will become part of the stock of coupon payments Bt+1 that are due tomorrow.

Finally, note that when δ equals 0, government issuance is it = Bt+1 —and we return to the

short-term debt set-up.

4.2 Government value function and new price of debt

Under long-term debt, the choice of it occurs in stage 2 of the model, and equation (18)

becomes an additional constraint to the government problem (1). Given state s, the first

government decision involves choosing B′ and i according to

V (s) = max
i,B′

u (g) + βEV (s′) (19)

s.t. g + zB = Z1−zy + q (s, B′) i

i = B′ − zBδ
z = z (s, B′, q (s, B′))

g = g (s, B′, q (s, B′))

s′ = (B′, z, ζ ′) .

Since the second government decision remains unchanged, problem (2) depicts the choice of

z and g.

Government and creditors trade long-term debt in a competitive international credit

market at the equilibrium price

q (s, B′) = βE [[1 + q (s′, B′ (s′)) δ] z′ (s′, B′ (s′) , q (s′, B′ (s′)))] . (20)

Similar to the one-period bond case, the first term of the sum represents the value of a

coupon received tomorrow. The difference is now that a bondholder receives a stream of
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coupons in every period t. Therefore, the second term can be interpreted as the value of

reselling the long-term bond after it paid its first coupon.

We now define the equilibrium under long-term debt.

Definition 4 (Long-term debt) Given an initial stock of debt B0, and a given repayment
decision from the past z−1, a recursive equilibrium with long-term debt is a government value

function V (s); policy functions B′ (s), i (s), g (s, B′, q (·)), and z (s, B′, q (·)); and a price
function q (s, B′) such that:

1. Given g (s, B′, q (·)), z (s, B′, q (·)) and the price q (s, B′), the government policy func-

tions B′ (s) and i (s) maximize the value function V (s) represented by the government

problem (19).

2. Given the value function V (s) and the price q (s, B′), policy functions g (s, B′, q (·))
and z (s, B′, q (·)) solve the second government’s problem represented by eq. (2).

3. The price at which the government borrows from the international credit market (20)

satisfies (expected) zero profits of competitive risk-neutral creditors.

5 The Crisis region under long-term debt

The definition of debt regions outlined in Section 3 holds for long-term debt. In the next

parts, we present new features of the price of debt, as well as the value functions that define

the bounds of the Crisis region.

5.1 Optimal price under long-term debt and determination of the

region bounds

In what follows, we particularize the equilibrium price of debt (20) when debt B′ lies in

different debt regions. When B′ ≤ B, the international credit market expects no default

and, hence, the government always repays. The equilibrium price is then stationary and

equal to

q (s, B′) =
β

1− βδ .

When debt lies in the Crisis region, the international credit market expects the govern-

ment to default with probability π. Under debt roll over, the equilibrium price is again

stationary but now yields

q (s, B′) =
β̂

1− β̂δ
.
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Using a backward induction argument, we now illustrate the logic when the government

runs down debt in T = 2 periods —we relegate to the Appendix the general case when T

is any arbitrary number. Be qTt (s, B′) ≡ qTt the current price at t when exiting the Crisis

region takes T periods. Starting at t = 0, in t = 1, 2 the optimal price does not depend on

the realization of the sunspot ζt since creditors know that tomorrow’s choice of debt lies in

the No-Default region. Hence, q21 = q22 = β/ (1− βδ). However, given that the government
planned to exit in T = 2 periods, at t = 0 creditors know that the government debt will lie

in the Crisis region in t = 1. Thus, at t = 0 the optimal price of debt is

q20 = βE
[(

1 + q21δ
)
z′
]

= β̂ + β̂δ
β

1− βδ .

Following this logic, the equilibrium price when the government exits the Crisis region in T

arbitrary periods is5

q (·) =


β

1−βδ , if B′ ≤ B

(1− (β̂δ)T−1−t) β̂

1−β̂δ + (β̂δ)T−1−t β
1−βδ , if B < B′ ≤ B̄ and t < T − 1

0 , if B̄ < B′.

(21)

The expression shows that price qTt is now the convex combination of the optimal prices

β/ (1− βδ) and β̂/(1 − β̂δ). In particular, the weights depend on both the government

choice of T , and the time left to exit the Crisis region. Finally, expression (21) is consistent

with the price being stationary when the government always rolls over debt that lies in the

Crisis region. When T →∞, the second term vanishes since the international credit market
expects the government to never lower debt, and hence q∞t = β̂/(1− β̂δ) for any t.
In what follows, we denote B and B̄ as B (δ) and B̄ (δ) in order to highlight the role of

debt maturity in the bounds of the Crisis region. Under long-term debt, the No-Lending

Condition (5) and the Participation Constraint (6) from Section 3 will still characterize the

lower and upper bounds of the Crisis region.

Starting first with the No-Lending Condition, note that expression V D in equation (5) is

the same as equation (8): the value of default when nobody lends does not depend on the

type of bond. We now compute V R in the NLC (5). Recall that under δ = 0 (the short-term

debt case), the government paid its total outstanding obligations B in the current period

and financed g with y thereafter. This was equivalent to a situation where lenders froze

credit for one period. The difference when δ > 0 is that now the government only repays δB

in the current period, and what happens thereafter depends on the duration of the credit

5From the previous example for T = 2, q = β/ (1− βδ) also holds when B′ ∈
[
B, B̄

]
and t = 1.

Therefore, q = β/ (1− βδ) is valid for the general T case when t = T − 1.
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market freeze.

If we consider the extreme case where the credit market freezes loans for infinitely many

periods, the government would never be able to issue debt again. Claim 16 in Section B.2.1

of the Appendix shows that the value function V R that results after iterating the law of

motion for it (18) is

V R (B0, δ) =
∞∑
t=0

βtu (gt) s.t. gt = y − δtB0. (22)

Expression (22) implicitly states that creditors never lend even when the government honours

its obligations in every period. Since this is a strong requirement, we implement the more

realistic assumption that lenders freeze loans only for an arbitrary number of periods. In

this set-up, we fix the credit freeze to one period, what allows us to compare our results with

Cole and Kehoe (2000). Hence, the government value function yields

V R (B0, δ) = u (y −B0) + β
u
(
y − 1−β

1−βδδB0

)
1− β , (23)

and the final expression for the No-Lending Condition under a one-period market freeze is

u (Zy)

1− β > u (y −B0) + β
u
(
y − 1−β

1−βδδB0

)
1− β . (24)

Expression V D in the Participation Constraint (6) only needs substituting the stationary

price q by β̂/
(

1− β̂δ
)
in eq. (7). For V R, we proceed with a backward induction logic

similar to the one-period bond case, but using budget constraint (17) and adding the law of

motion of issuances (18). Therefore, if no default occurred after the T periods of transition,

the government problem at the No-Default region is

max
{gs}∞s=T ,{is}

∞
s=T ,

{Bs+1}∞s=T

∞∑
s=T

βsu (gs) (25)

s.t. gs +Bs = y + qsis ∀s ≥ T

is = Bs+1 − δBs ∀s ≥ T

qs = β/ (1− βδ) ∀s ≥ T

BT = B given

Bs ≤ B ∀s ≥ T .
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(Refer to Section B.3.1 in the Appendix for the full solution.) The optimality condition

u′ (gt) = u′ (gt+1) characterizes a constant government spending given by

ḡ = y −
(

1− β
1− βδ

)
B.

This last expression leads to the continuation payoff u (ḡ) / (1− β) once the government

reaches the No-Default region. Using this result when the government problem starts with

an initial debt B0 > B (δ) and debt is lowered in T periods, gives6

V T (B0, δ) = max
{gt}T−1t=0 , {it}

T−1
t=0 ,

{Bt+1}T−1t=0

T−1∑
t=0

β̂
t
u (gt) + β̂

T−1
β
u
(
y −

(
1−β
1−βδ

)
B
)

1− β +

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β

(26)
s.t. gt +Bt = y + qTt it ∀t = 0, 1, ..., T − 1

it = Bt+1 −Btδ ∀t = 1, ..., T − 2

it = B −Btδ t = T − 1

qTt = βEt
[
zt+1

(
1 + qTt+1δ

)]
z−1 = 1, B0, B given,

with associated Euler Equation

u′ (gt) = u′ (gt+1)

[
β̂
(
1 + δqTt+1

)
qTt

]

Given the assumptions on the international credit market, it is immediate to see that the term

in square brackets in the Euler Equation is equal to 1. Particularly, creditors’indifference

condition requires balancing today’s cost of lending with tomorrow’s benefit of being paid a

coupon plus the possibility of reselling the bond. As a result, government spending will be

constant during the first t = 0, 1, ..., T − 1 periods as in the short-term debt case.

Using again the T budget constraints, we can obtain the expression for the optimal

gT (B0, δ) when the government lowers debt in T periods to exit the Crisis region —for a full

derivation, see Section B.3.3 in the Appendix.

gT (B0, δ) = y −
(
1 + qT0 δ

) [
B0 −B

T−1∏
j=0

qTj
1 + qTj δ

]1 +
T−2∑
k=0

T−2−k∏
j=0

qTj

T−1−k∏
j=1

(
1 + qTj δ

)

−1

6The solution to this problem is in Section B.3.2 of the Appendix.
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With these results, we define the Participation Constraint (6) as

max
{
V 1 (B, δ) , V 2 (B, δ) , ..., V ∞ (B, δ)

}
≥ u

(
Zy +

β̂

1− β̂δ
B

)
+ β

u (Zy)

1− β , (27)

where

V ∞ (B, δ) =
u
(
y −

[
1−β̂
1−β̂δ

]
B
)

1− β̂
+

βπu (Zy)(
1− β̂

)
(1− β)

.

Finally, the equality of (27) solves B̄ (π, δ) —which we denote as B̄ (δ).

5.2 Zero- and positive-probability crisis equilibrium

We numerically show that a nonempty Crisis region can exist using long-term debt for

π ≥ 0. Following this, we illustrate different debt trajectories {Bt+1} under alternative plans
of lowering debt in T periods. All these proofs are relegated to the Appendix.

Lemma 17 shows that there is one B (δ) defining a lower bound to the Crisis region when

δ > 0. For the upper bound B̄ (π, δ), Lemma 19 argues that V ∞ (B, δ) dominates any other

policy T < ∞ when π goes to zero in the PC. Intuitively, when creditors expect default to

occur with zero probability in the Crisis region, the government has no incentive to lower

debt. Thus, the Participation Constraint (27) becomes

u
(
y −

[
1−β
1−βδ

]
B̄ (0, δ)

)
1− β = u

(
Zy +

β

1− βδ B̄ (0, δ)

)
+ β

u (Zy)

1− β

In the Appendix, Lemma 20 proves that there exists a unique level of debt B̄ (0, δ) that

equates the previous expression —Lemma 21 does the same for B̄ (π, δ) at strictly positive

probabilities of default.

Before proceeding to the characterization of a nonempty Crisis region, it is worth noting

the difference between the amount of maturing debt versus the total amount of debt. To

understand this, we denote B̂ ≡ B/ (1− δ) the total outstanding obligations for a given
debt level B. In the model with one-period bonds of the previous sections, any bond issued

in period t matured at t+ 1. As a result, the amount of debt maturing at t+ 1 equated total

outstanding debt, namely, B = B̂. With long-term debt, however, the amount of maturing

debt in period t+1 only pays a fraction of total outstanding debt B̂. This is because coupons

divide the payment of B̂ into more periods, thus decreasing maturing debt for every t. The

plot below highlights the different repayment schedules when the government repays the

same stock of debt B̂ using either one-period bonds (Figure 5a) or long-term bonds with
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Panel 5a Panel 5b

Fig. 5. Maturing debt accumulated over periods, long-term debt. Panel 5a: δ = 0; Panel 5b: δ = 0.5; total

outstanding debt ' 9.28.

infinite coupon payments (Figure 5b).

Figure 5b shows how coupon payments generate the same total debt as in Figure 5a by

allocating portions of debt more evenly across periods. This lowers the amount of maturing

debt at every t, thus allowing the government to stand a higher total amount of debt B̂. As a

result of this, the government’s default incentives should intuitively decrease as δ rises, thus

increasing thresholds B (δ) and B̄ (δ) where the government is indifferent between repayment

or default.

Using the previous choice of parameters, Figure 6 characterizes three nonempty Crisis

regions. To obtain this graph, we first replace the level of debt in the No-Lending Condition

(24) and in the Participation Constraint (27) by B̂ (1− δ). We do this to derive conclusions
on the thresholds B (δ) and B̄ (δ) based on total amount of debt, when comparing them

under short-term (δ = 0) and long-term debt (δ > 0). Then, we define

UNLC (B; δ) ≡ u (Zy)

1− β − u (y − (1− δ)B)− β
u
(
y − 1−β

1−βδδ (1− δ)B
)

1− β

Uπ>0
PC (B; δ) ≡

u
(
y − 1−β̂

1−β̂δ (1− δ)B
)

1− β̂
+

βπ

1− β̂
u (Zy)

1− β − u
(
Zy +

β̂

1− β̂δ
(1− δ)B

)
− βu (Zy)

1− β .

and plot these curves as δ varies — Section B.3.5 of the Appendix analytically describes

their behavior as B increases. Debt levels B satisfying Uπ>0
PC (B; δ) ≥ 0 ≥ UNLC (B; δ) when

δ = {0, 0.1, 0.2} characterize intervals where self-fulfilling debt crises can occur with positive
probability. When δ = 0, the government repays its total outstanding obligations in one

period. Instead, when δ > 0, total debt is spread across infinitely many periods, and from

our previous intuition this should allow B̂ to be higher. In particular, some debt levels

that initially violated eqs. (24) and (27) when δ = 0 will now satisfy them since a higher δ
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decreases default incentives. Ultimately, this implies that the bounds of the Crisis region can

only increase in order to keep the government indifferent between defaulting and repaying.

The next Proposition formalizes this result.

Proposition 5 When δ rises, the bounds B (δ) and B̄ (π, δ) of the Crisis region increase.

Proof. See Appendix.
Figure 5b illustrated how an increase in debt maturity made future coupon payments a

larger share of total debt. In line with this, the result in Proposition 5 analytically states

that higher debt maturity decreases government’s incentives to default. When δ increases,

the government faces lower obligations at early periods, therefore increasing government’s

incentives to (i) repay when nobody lends (i.e., satisfy the NLC (24)), and (ii) remain in the

international credit market (i.e., satisfy the PC (27)).

Figure 7 plots trajectories of debt when δ > 0 and the government chooses the optimal

time to exit the Crisis region by lowering the total amount of debt. It is straightforward to

observe that the optimal government policies {Bt+1} imply trajectories of debt that increase
T as B0 rises. This is similar to the short-term debt case. The bounds of the Crisis region

when δ > 0, however, are above those of short-term debt —what coincides with the finding

in Proposition 5. When δ > 0, the government can tolerate a higher total amount of debt

since coupon payments allocate a larger share of obligations in future periods.
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6 Welfare analysis

In this section, we analyze the welfare implications of lengthening debt maturity. We first ex-

plore the impact of short-term and long-term debt in the government’s optimal debt choices.

We then turn to the numerical comparison of welfare under bonds of different maturity.

Starting at the same level of total outstanding debt, Figure 8 illustrates the optimal path

{Bt+1} under the two classes of bonds. In particular, we set π = 0.0001, and parameters

δ = 0 and δ = 0.1 denote one-period and long-term bonds, respectively. The plot shows

that an initial debt level B̂ ≈ 11.15 is closer to the lower bound of the Crisis region under

long-term debt (B (0.1) ≈ 10.23) than under short-term debt (B (0) ≈ 9.28). The reason

why B (0.1) > B (0) is that creditors now expect default to occur at larger debt levels when δ

is higher. Recall that when debt maturity increases, some debt levels above threshold B (0)

will now be independent from the sunspot variable ζt. At those levels of debt, not only the

government’s incentives to default decreased, but also creditors know that the government

can tolerate a larger stock of total debt. As a result, the government now repays these debt

levels with probability 1, until it reaches the new upper bound B (0.1).7

Moreover, the number of periods that the government takes to escape the Crisis region

T ∗ (B0) also varies as δ increases. The plot shows that when δ = 0, the government avoids

7Proposition 5 of the previous section analytically proved this result.
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self-fulfilling debt crises by exiting the Crisis region in T (B̂) = 10 periods. When δ = 0.1,

however, the government chooses a faster policy T (B̂) = 5. Specifically, when δ increases,

any total debt is now closer to the new lower bound of the No-Default region. This proximity

of B̂ to B (0.1) provides incentives to decrease T (B̂), and the government therefore becomes

less vulnerable to self-fulfilling debt crises.

Table 1

Welfare under short-term and long-term debt

T (B̂) V (B̂, T (B̂), δ)

Short-term debt (δ = 0) 10 56.4204

Long-term debt (δ = 0.1) 5 56.4272

Note: utility and parameter values as reported in text.

Table 1 summarizes some important results from this example. Furthermore, the second

column reports a greater welfare for bonds of longer maturity. Motivated by this observation,

we numerically explore the welfare implications of bond maturity for a wider range of initial

debt levels. First, we build the value functions for short-term and long-term debt at different

T’s. Second, we evaluate each value function for every total outstanding debt B̂ that lies in

the Crisis region. Third, for each B̂, we identify which policy T achieves the highest value

V T (·). We repeat this process both for short-term and long-term debt. Fourth, we build the
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envelope function that collects the highest V T (·), for every B̂ and for each separate case,

δ = 0 and δ > 0. Specifically, for each δ = {0, 0.1}, the envelopes will show the value V T (·),
for each B̂ in the Crisis region and at the optimal T (B̂). Finally, we use these envelopes to

perform welfare comparisons.

Figure 9 shows the envelope functions under short-term (red line) and long-term debt,

for δ = 0.1 and 0.2 (blue line and dark line, respectively).8 It is immediate to observe

that as δ increases, the envelopes are strictly above the one under short-term debt, for any

initial total debt in the Crisis region. In other words, the government attains a higher total

utility at any initial B̂ when debt maturity increases. To understand this, recall that when

δ = 0 the government paid back total debt in one period. When δ > 0, however, the

government repays the same total amount of debt using coupons in each period. Precisely,

a higher δ decreases the value of the first coupons by transferring a portion of total debt

to the future. Since this decreases both default incentives and T (B0), the likelihood of

self-fulfilling debt crises declines. This is a first gain coming from a higher δ. But now,

discounting also generates an additional government gain coming from a shorter transition

T (B0). In particular, when the optimal T (B0) decreases, the government reaches the No-

8This figure illustrates the government payoffs for a portion of total debt levels B. Refer to Section
B.4.2 of the Appendix for a detailed description of the government’s payoff for debt levels starting at B = 0.
Figures 12 and 13 in Section B.4.2 of the Appendix also illustrate how welfare increases when π rises.
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Default region in a smaller number of periods, and therefore it discounts less the payoff u (ḡ)

attained when the government arrives to that region. These gains finally explain why welfare

increases compared to the one-period bonds case.

7 Conclusion

This paper explored the impact of debt maturity in a model of self-fulfilling debt crises,

featuring a small open economy where a benevolent government maximized household’s

utility and could default on its debt. The main finding showed that switching from short-

term debt to long-term debt can improve the welfare of the economy. Specifically, the

first part of the paper characterized an interval of debt levels for short-term debt, where

creditors’expectations of default could trigger government’s default with a fixed probability.

The second part of the paper modified the initial set-up by switching to long-term debt in the

form of a coupon-paying bond. This type of bond changed the structure of the equilibrium

price of debt. Furthermore, long-term debt shifted upward the bounds of the interval of debt

levels where crises are belief-driven. Finally, the paper numerically showed that long-term

bonds can improve the economy’s welfare by decreasing default incentives of the government

and the likelihood of self-fulfilling debt crises.

This paper suggested that lengthening debt maturity can increase welfare using an eco-

nomic environment as in Cole and Kehoe (2000). Other works in the literature, however,

have documented trade-offs coming from the use of both short-term and long-term debt

in models of sovereign default. For example, Arellano and Ramanarayanan (2012) explore

hedging and incentive benefits for the government that are linked to the issuance of debt

of different maturities. Whether there is an optimal combination of short-term and long-

term bonds within a model of self-fulfilling debt crises remains an open question. We plan

to explore this question by incorporating the possibility to choose between different debt

instruments in our analysis in future work.
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Appendix A - Short-term debt

7.1 Determination of the equilibrium price
When B′ lies in the Crisis region, creditors expect the government to default with probability π.
Thus, the equilibrium price equation (3) leads to

q
(
s,B′

)
= β [π (0) + (1− π)]⇒ q

(
s,B′

)
= β (1− π)

If B′ lies in the Default region, the international credit market expects the government to default
with probability 1, and therefore q (s,B′) = 0. In contrast, if B′ lies in the No-Default region, the
government never defaults and q (s,B′) = β.

7.2 Determination of the lower bound of the Crisis region
To show that there exists a unique B = B solution to equation (10) at equality, the next result
follows.

Lemma 6 There exists a unique B that is solution to

u (Zy)

1− β = u (y −B) + β

[
u (y)

1− β

]
.

Proof. Using the No-Lending Condition, let

F (B) =
u (Zy)

1− β − u (y −B)− β u (y)

1− β = 0.

Since (i) F (0) = [u (Zy)− u (y)] / (1− β) < 0, (ii) F (B → y) = u (Zy) / (1− β)−u (0)−βu (y) / (1− β)→
∞, and (iii) dF (B) /dB = u′ (y −B) > 0, then there exists a unique B > 0 solution to F (B) = 0.

7.3 Determination of the upper bound of the Crisis region
7.3.1 Optimal policy in the No-Default region under short-term debt

Claim 7 solves the government maximization problem under short-term debt. In particular, it
shows that the optimal paths for government spending {gt} and bonds {Bt+1} are constant when
there is no risk of default (i.e., π = 0).

Claim 7 (Short-term debt) If π = 0 and given an initial debt Bt′ = B ≤ B, then government
spending is constant and equal to

g = y −B (1− β) ,

and government debt Bs+1 equals the initial debt Bt′ for s ≥ t′.

Proof. Starting at t′ and for any initial Bt′ = B, a general version of the government problem
(equation (11) in the main text) can be written as

max
{Bs+1}∞s=t′
{gs}∞s=t′

∞∑
s=t′

βsu (gs) (28)
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s.t. gs +Bs = y + qsBs+1 ∀s ≥ t′
Bt′ = B given, and B ≤ B
Bs ≤ B ∀s ≥ t′.

When π = 0, the price q of a riskless bond equals β and the government budget constraint is

gs +Bs = y + βBs+1 ∀s ≥ t′.

The optimal paths {gs}∞s=t′ , {Bs+1}
∞
s=t′ of the government maximization problem (28) solve

L =
∞∑
s=t′

{βsu (gs)− λs [gs + y + βBs+1 −Bs]}

The first-order and the transversality conditions are

{gs} : βsu′ (gs)− λs = 0 ⇒ βsu′ (gs) = λs
{Bs+1} : −βλs − λs+1 (−1) = 0 ⇒ βλs = λs+1

lim
s→∞

βsλsBs+1 = 0.

From the first-order conditions,
u′ (gs) = u′ (gs+1) ,

and this implies a constant government spending at gs = gs+1 = g.
We now show that Bs equals the initial Bt′ = B for every s ≥ t′. Plugging g in two consecutive

budget constraints, the difference yields

Bs+2 −Bs+1 =
1

β
(Bs+1 −Bs) .

Let ∆s+1 = Bs+1−Bs and notice that β−1 > 1. When ∆s+1 < 0, the optimal path of debt diverges
to negative infinity. In this case, the government can always do better by increasing gt but this
violates the sign of the transversality condition. When ∆s+1 > 0, government debt diverges to
positive infinity. But this now violates constraint Bs ≤ B since the optimal path {Bs+1}∞s=t′ will
hit the lower bound of the Crisis region for some s. Moreover, this violates the assumption that
lenders have a finite wealth. Thus, the only ∆s+1 consistent with the transversality condition and
with optimality of government spending is ∆s+1 = 0, namely, Bs+1 = Bs. Since this holds for every
s ≥ t′, the optimal path {Bs+1}∞s=t′ is constant and equal to Bt′ = B, also satisfying constraint
Bs ≤ B for every s ≥ t′.

Finally, optimal government spending in terms of the initial debt level Bt′ = B yields

g +B = y + βB ⇒ g = y −B (1− β)
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7.3.2 General problem when debt is lowered in T periods

Be ḡ = y − (1− β)B. When T = {1, 2, 3}, the government’s objective functions are

u (g0) + β
u (ḡ)

1− β

u (g0) + β̂u (g1) + β̂β
u (ḡ)

1− β + βπ
u (Zy)

1− β

u (g0) + β̂u (g1) + β̂
2
u (g2) + β̂

2
β
u (ḡ)

1− β + βπ
u (Zy)

1− β

(
1 + β̂

)
respectively. Therefore, the objective function of the government over T periods is

T−1∑
k=0

β̂
k
u (gk) + β̂

T−1
β
u (ḡ)

1− β + βπ
u (Zy)

1− β

T−2∑
k=0

β̂
k
,

or, alternatively,
T−1∑
k=0

β̂
k
u (gk) + β̂

T−1
β
u (ḡ)

1− β +

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β .

7.3.3 Solution of the general problem for any T ≥ 2

The general problem is

V T (B0) = max
{Bt+1}T−1t=0 ,

{gt}T−1t=0

u (g0)+β̂u (g1)+β̂
2
u (g2)+...+β̂

T−1
u (gT−1)+

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β +β̂
T−1

β
u (ḡ)

1− β

s.t. gt = y −Bt + qtBt+1 ∀t = 0, 1, .., T − 2
gt = y −Bt + qtB t = T − 1
qt = βE [zt+1] , zt = 1
B0, B given; ḡ = y − (1− β)B.

If B0 lies in the Crisis region, then qTt = β̂. After plugging the constraints, the first-order
conditions for t yield

{Bt} : β̂
t−1

u′ (gt−1) β̂ + β̂
t
u (gt) (−1) = 0⇒ u′ (gt−1) = u′ (gt)⇒ gt−1 = gt

From the first-order condition, gt = gt+1 for every t = 0, 1, ..., T − 1. Furthermore, since g0
depends on the initial debt level B0, then we label constant government spending as gt = gT (B0)
for every t = 0, 1, ..., T − 1.

7.3.4 Expression for gT (B0)

To derive an expression for gT (B0), we first replace government spending by gT (B0) in the T budget

constraints of the previous problem. Then, we multiply each expression by β̂
t
with t = 0, 1, ..., T−1,
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to obtain

β̂
0
gT (B0) + β̂

0
B0 = β̂

0
y + β̂

0
β̂B1

β̂
1
gT (B0) + β̂

1
B1 = β̂

1
y + β̂

1
β̂B1

...

β̂
T−2

gT (B0) + β̂
T−2

BT−2 = β̂
T−2

y + β̂
T−2

β̂BT−1

β̂
T−1

gT (B0) + β̂
T−1

BT−1 = β̂
T−1

y + β̂
T−1

βB.

Adding up these terms leads to

gT (B0)

T−1∑
k=0

β̂
k

+B0 = y

T−1∑
k=0

β̂
k

+ β̂
T−1

βB,

and solving for gT (B0) renders

gT (B0) = y −
[

1− β̂
1− β̂T

] [
B0 − β̂

T−1
βB
]
.

7.3.5 The upper bound of the Crisis region when π = 0

Before characterizing the existence and uniqueness of the upper bound B̄ of the Crisis region,
we introduce the next result that holds when π = 0. When the probability of defaults is null, the
government should always choose to roll-over its current level of debt instead of adopting any policy
of lowering debt in T periods.

Lemma 8 Suppose that π → 0 and consider V∞ (B0)− V T (B0). Then,

V∞ (B0)− V T (B0) > 0

for every T <∞.

Proof. When π → 0, the value function at T = 1 is defined as

V 1 (B0) = u (y −B0 + βB) + β
u (y − (1− β)B)

1− β ,

while for T ≥ 2,

V T (B0) =

[
1− βT

1− β

]
u

(
y −

[
1− β

1− βT

]
B0 +

[
1− β

1− βT

]
βTB

)
+ βT

u (y − (1− β)B)

1− β .

Computing V∞ (B0)− V 1 (B0) renders

1

1− β [u (y − (1− β)B0)− (1− β)u (y −B0 + βB)− βu (y − (1− β)B)] ,

and since
(1− β) (y −B0 + βB) + β (y − (1− β)B) = y − (1− β)B0,
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then by concavity of u (·) and Jensen’s inequality, u (y − (1− β)B0) − (1− β)u (y −B0 + βB) −
βu (y − (1− β)B) > 0. Thus, V∞ (B0)− V 1 (B0) > 0.

With a similar argument for V∞ (B0)− V T (B0) when T ≥ 2,

V∞ (B0)− V T (B0) =
1

1− β
[
u (y − (1− β)B0)−

(
1− βT

)
u
(
gT (B0)

)
− βTu (y − (1− β)B)

]
,

and since(
1− βT

) [
y −

[
1− β

1− βT

]
B0 +

[
1− β

1− βT

]
βTB

]
+ βT [y − (1− β)B] = y − (1− β)B0,

then, V∞ (B0)− V T (B0) > 0 —using concavity of u (·) and Jensen’s inequality.
Having proved that V∞ > V T for π > 0 and T <∞, we replace the left-hand side of equation

(15) by V∞ (B) and proceed to characterize B̄ (0) (which for simplicity we call B̄).

Lemma 9 There exists a unique B̄ that solves

u
(
y − (1− β) B̄

)
1− β = u

(
Zy + βB̄

)
+ β

u (Zy)

1− β

Proof. Using the Participation Constraint with V∞ (B) in the right-hand-side, we can define the
following function

H (B;β, y, Z) =
u (y − (1− β)B)

1− β − u (Zy + βB)− βu (Zy)

1− β = 0

Given that (i) H (0; ·) = [u (y)− u (Zy)] / (1− β) > 0, (ii) H (B → y/ (1− β) ; ·) = u (0) / (1− β)−
u (Zy + βy/ (1− β)) − βu (Zy) / (1− β) → −∞, and (iii) ∂H (B; ·) /∂B = −u′ (y − (1− β)B) −
u′ (Zy + βB)β < 0, then there exists a unique B̄ > 0 such that the Participation Constraint is
satisfied with equality. Moreover, for any B < B̄ (0), then V∞ (B) > V D (B), and viceversa.

7.3.6 Figure 2

Following a logic similar to Cole and Kehoe (2000), we describe the behavior of equations (10) and
(15). Rewriting first

Uπ=0PC (B) ≡ u (y − (1− β)B)

1− β − u (Zy + βB)− βu (Zy)

1− β

UNLC (B) ≡ u (y −B) + β

[
u (y)

1− β

]
− u (Zy)

1− β ,

then it is immediate to observe that they decrease monotonically asB increases, since (i) Uπ=0PC (B = 0) =
UNLC (B = 0) = [u (y)− u (Zy)] / (1− β) > 0, (ii) limB→y/(1−β) U

π=0
PC (B) = u (0) / (1− β) −

u (Zy + yβ/ (1− β))− βu (Zy) / (1− β)→ −∞ and limB→y UNLC (B) = u (0) + u (y)β/ (1− β)−
u (Zy) / (1− β) → −∞, and (iii) dUπ=0PC /dB = −u′ (y − (1− β)B) − u (Zy + βB)β < 0 and
dUNLC/dB = −u′ (y −B) < 0.
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7.3.7 The upper bound of the Crisis region when π > 0

Lemma 10 For some π > 0, there exists a unique B̄ that solves

u
(
y −

(
1− β̂

)
B0

)
1− β̂

+
βπu (Zy)

(1− β)
(

1− β̂
) = u

(
Zy + β̂B̄

)
+ β

u (Zy)

1− β .

Proof. As performed in Lemma 9, we use equation (15) to define

H̃ (B;β, y, Z, π) =
u(y − (1− β̂)B0)

1− β̂
+

βπu (Zy)

(1− β) (1− β̂)
− u

(
Zy + β̂B̄

)
− βu (Zy)

1− β = 0.

Given that (i) H̃ (0; ·) = u (y) /(1 − β̂) − u (Zy) / (1− β) + βπu (Zy) /[(1− β) (1 − β̂)] > 0,9

(ii) H̃ (B → y/ (1− β) ; ·) = u (0) / (1− β) + βπu (Zy) /[(1− β) (1 − β̂)] − u(Zy + β̂y/(1 − β̂)) −
βu (Zy) / (1− β)→ −∞, and (iii) dH̃ (B; ·) /dB = −u′(y − (1− β̂)B)− u′(Zy + βB̂)β̂ < 0, then a
positive B̄ (·) satisfies equation (15) and is unique.

7.3.8 Figure 3

Since function UNLC (B) is independent from π, the same result in Section A.3.6 applies. Therefore,
defining

Uπ>0PC (B) ≡ u(y − (1− β̂)B)

1− β̂
+

βπu (Zy)

(1− β) (1− β̂)
− u(Zy + β̂B)− βu (Zy)

1− β ,

it is easy to observe that Uπ>0PC (B) monotonically decreases as B increases, since (i) Uπ>0PC (B = 0) =

[u (y)− u (Zy)] /(1−β̂)+βπu (Zy) / (1− β) (1−β̂) > 0, (ii) limB→y/(1−β) U
π>0
PC (B) = u (0) /(1−β̂)+

βπu (Zy) / (1− β) (1−β̂)−u(Zy+yβ̂/(1−β))−βu (Zy) / (1− β)→ −∞, and (iii) dUπ>0PC (B) /dB =

−u(y − (1− β̂)B)− u(Zy + β̂B)β̂ < 0.

Lemma 11 When π increases, the stationary upper bound B̄ (π) decreases.

Proof. By Lemma 10 there exists a unique B̄ (π) that is solution to equation (15) at equality.
Rewriting that equation as

H =
u
(
y −

(
1− β̂

)
B
)

1− β̂
+

π(
1− β̂

) βu (Zy)

(1− β)
− u

(
Zy +Bβ̂

)
− βu (Zy)

1− β = 0,

we can apply the implicit function theorem to get ∂B (π) /∂π = − (∂H/∂π) / (∂H/∂B). Expression
∂H/∂B and ∂H/∂π yield

∂H

∂B
= −

[
u′
(
y −

(
1− β̂

)
B
)

+ u′
(
Zy +Bβ̂

)
β̂
]
< 0,

9Since u (y) > u (Zy) and limπ→0 H̃ (0;β, y, Z, π) > 0, then by continuity of π in [0, 1], there is some
strictly positive π such that H̃ (0;β, y, Z, π) is still greater than 0.
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∂H

∂π
= −

βB
u′

(
y −

(
1− β̂

)
B
)

1− β̂
− u′

(
Zy +Bβ̂

)+
β(

1− β̂
)2 [u(y − (1− β̂

)
B
)
− u (Zy)

] .
The term in brackets in the last expression is positive. Also, the No-Lending Condition implies

that y − B < Zy. Adding Bβ̂ to the last inequality and invoking concavity of u (·) renders
u′
(
y −

(
1− β̂

)
B
)
> u′

(
Zy +Bβ̂

)
. Therefore, the first term is positive and ∂H/∂π < 0, thus

implying that ∂B (π) /∂π < 0.

7.3.9 Proof of Proposition 1

We now present Lemma 12, which will be useful for proving Proposition 2.

Lemma 12 Suppose that the government wants to run down debt in T periods (i.e., have BT = B).
Denote the government spending at time t for t ≤ T − 1 along this path as gTt . Then,

1. optimal gTt is constant for all t ∈ {0, ..., T − 1}, and

2. gTt < ḡ, for all t ∈ {0, ..., T − 1}.

Proof. Throughout the proof, we assume that B0 starts in the Crisis region (B0 > B), and that
the government optimally decides to lower debt in T periods. The government problem becomes

V T (B0) = max
{Bt+1}T−1t=0

T−1∑
t=0

β̂
t
u
(
y −Bt + β̂Bt+1

)
+ β̂

T−1
u (y −BT−1 + βB)

+

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β + β̂
T−1

β
u (y − (1− β)B)

1− β .

To prove part 1 of the Lemma, observe that optimality conditions for Bt+1 in t = 0, ..., T − 1
yield

u′
(
y −B0 + β̂B1

)
= u′

(
y −B1 + β̂B2

)
⇒ g0 = g1

...
...

u′
(
y −BT−2 + β̂BT−1

)
= u′ (y −BT−1 + βB) ⇒ gT−2 = gT−1.

Therefore, gt−1 = gt for every t = 1, ..., T − 1. In other words, the government smooths spending
while it decreases debt to reach at the No-Default region.

To prove part 2, recall that if the government exits the Crisis region in T periods, then it must
be that Bt > B for every t ≤ T − 1. If this was not the case, then the government would have
already exited the Crisis region at an earlier T̃ < T , thus contradicting the assumption that running
debt in T periods was optimal. Hence, at t = T − 1, BT−1 > B implies gT−1 < ḡ. But, since the
government smooths spending for T periods, gt = gT−1 implies

gt < ḡ ∀t = 0, 1, ..., T − 1.

Therefore, gt is smaller than the optimal level of spending that the government attains at the
No-Default region, ḡ.

We now turn to the proof of Proposition (2), that follows a similar logic to the result established
by Cole and Kehoe (2000).
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Proof of Proposition (2). The idea of the proof is to show that for some π > 0 there is an
initial range of debt levels in the Crisis region

[
B, B̄ (π)

]
where the government strictly prefers to

run down debt in one period. As B0 increases, we then show that T ∗ (B0) monotonically increases;
namely, that the government delays exiting the Crisis region as its outstanding obligations rise.
Therefore, for a higher B0 in

[
B, B̄ (π)

]
, this result implies that the government optimally lowers

initial debt following policies T ∗ (B0) ∈ {1, 2, ...,∞}. Throughout the proof, we assume that π > 0
and that the government starts in the Crisis region (B0 > B). We also assume that the government
chooses to run down debt in T periods (BT = B).10

To prove that T ∗ (B0) = 1 strictly dominates any other plan T > T ∗ (B) for some interval in[
B, B̄ (π)

]
, we use the value function when T = 1,

V 1 (B0) = u (y −B0 + βB) + β
u (ḡ)

1− β .

The value function when T > 1 (evaluated at the optimal path {Bt+1} is

V T (B0) =
(

1 + β̂ + ...+ β̂
T−1)

u
(
gT (B0)

)
+ β̂

T−1
β
u (ḡ)

1− β + [Value if default occurs] ,

with

gT (B0) = y − 1− β̂
1− β̂T

B0 +
1− β̂

1− β̂T
β̂
T−1

βB.

Starting at t = 0 and if T = 1, the government attains ḡ when t = 1. For any other policy T > 1,
however, government spending at t = 1 is still at gT (B0). Using that gT (B0) < ḡ (Lemma 12),
this means that the continuation value of V 1 (B0) is greater than V T (B0) for any T > 1. If we
then compare government spendings at t = 0, we know that g0 under policy T = 1 will be strictly
greater than any gT (B0) if

y −B0 + βB > y − 1− β̂
1− β̂T

B0 +
1− β̂

1− β̂T
β̂
T−1

βB,

from where it follows that

B0 <
B

1− π .

Therefore, if B0 ∈ (B,B/ (1− π)), V 1 (·) dominates any other value function V T (·), for T > 1.
It is easy to show that V 1 (B0) > V 2 (B0) > ... > V∞ (B0) when B0 = B/ (1− π). First, note

that

V 1 (B0) = u(y −B0 + βB)︸ ︷︷ ︸
g1

+ β
u (y − (1− β)B)

1− β ,

V 2 (B0) =
(

1 + β̂
)
u(y − B0

1 + β̂
+

1

1 + β̂
β̂βB︸ ︷︷ ︸)

g2

+ βπ
u (Zy)

1− β + β̂β
u (y − (1− β)B)

1− β .

10Here, we skip some intermediate results from Cole and Kehoe (2000). In their proof, the authors
analytically show that (i) T ∗ (B0) increases by one period as B0 increases, and (ii) there cannot be sudden
jumps from a finite T ∗ (B0) to T ∗ (B0)→∞.
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By comparing g1 (B0) and g2 (B0) at B0 = B/ (1− π), we obtain that government spending in the
first period are the same,

g1 (B0) = y −B
[

1− β̂
1− π

]
= g2 (B0) .

Using Lemma 12, it is easy to observe that g1 (B0) and g2 (B0) are strictly below ḡ for any π > 0,

g1 (B0) = g2 (B0) = y −B
[

1− β̂
1− π

]
< y − (1− β)B = ḡ,

But, from period t = 1 onward, V 1 (B0) outperforms V 2 (B0) since V 1 (B0) reaches ḡ one period
before V 2 (B0) —Lemma 12, part 2, guarantees that g2 (B0) < ḡ, thus making V 1 (B0) to strictly
dominate V 2 (B0). By the same token, we can extend this logic to argue that V 1 (B0) dominates
V T (B0) for any T > 1. Hence, T ∗ (B0) = 1 is preferred to any other policy T when B0 = B/ (1− π).

To prove that every payoff V T (B0) is ranked in decreasing order at B0 = B/ (1− π), take
V T (B0) and V T+1 (B0), for T > 1, and note that gT (B0) equals

gT (B0) = y −B
[

1− β̂
1− π

]
.

Since gT = gT+1 in periods 0, 1, ..., T , value V T (B0) reaches ḡ before any V T+1 (B0), i.e., V T (B0) >
V T+1 (B0). Thus, the government strictly prefers to run down debt in one period when B0 ∈
[B,B/ (1− π)] ⊂

[
B, B̄

]
.

We now show that schedules T ∗ (B0) > 1 can also be optimal for debt levels B0 > B/ (1− π)
in the Crisis region. Specifically, as B0 increases, we need to prove that (i) every value function
V T (B0) strictly decreases, (ii) value functions V T (B0) with higher T decrease by less, and (iii)
for small π > 0, there exists a full range of possibilities T ∗ (B0) such that a higher T increases the
government payoff V T (B0), i.e. ∂V T (B0) /∂T > 0. As a result, (i) - (iii) imply that the optimal
T ∗ (B0) rises as B0 increases in

[
B/ (1− π) , B̄

]
. The idea behind this part of the proof is that

a higher B0 increases the government’s debt burden when it has to run down debt. Therefore,
an increase in B0 should intuitively make delay (namely, a higher T ) preferable. In particular,
discounting makes the government prefer to divide the decrease of initial debt B0 into more periods
in order to avoid higher initial sacrifices of gt.

To show (i), note that

d

dB0
V T (B0) = −u′

(
gT
)
< 0 and

d

dB0
V∞ (B0) = −u′ (g∞) < 0

implies dV T (B0) /dB0 < 0 for any T = 1, 2, ...,∞.
To show (ii), compare first any dV T (B0) /dB0 and dV∞ (B0) /dB0, and propose that

d

dB0
V T (B0) <

d

dB0
V∞ (B0)⇒ u′

(
gT
)
> u′ (ḡ) .

It can be easily shown that gT < ḡ when B0 > B/ (1− π). With a similar logic, dV T−1 (B0) /dB0 <
dV T (B0) /dB0, since u′

(
gT−1

)
> u′

(
gT
)
when B0 > B/ (1− π). Therefore,

0 >
d

dB0
V∞ (B0) > ... >

d

dB0
V 2 (B0) >

d

dB0
V 1 (B0) . (29)
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Intuitively, since increasing B0 worsens any scenario for the government, delaying more is preferable
in order to sacrifice less spending in the initial periods (and gain more because of discounting).

To prove (iii), we follow Cole and Kehoe (2000) and assume that T is continuous. Thus, we can
take the derivative of V T (B0) with respect to T and obtain,

∂V T (B0)

∂T
= β̂

T−1
ln β̂×

{
ugT

(
gT
)

1− β̂T
[
βB − β̂B0

]
+ β

u (ḡ)

1− β −
β

1− β̂

[
(1− π)u

(
gT (B0)

)
+ (π)

u (Zy)

1− β

]}
.

(30)
When B0 ∈ (B/ (1− π) , B̄], the first term (multiplied by ln β̂) is positive. This term shows the
government gain from remaining in the Crisis region in every period. The price in the Crisis region
β̂, is always lower than the price of the No-Default region, β. However, for some large levels B0
in the Crisis region, the government gain β̂B0 is greater than its gain βB when it arrives to the
No-Default region. As a result, this provides an incentive to delay exit. In contrast, the last terms
(multiplied by ln β̂) are the cost of staying in the Crisis region. Intuitively, the opportunity cost
of remaining in the Crisis region is βu (ḡ) / (1− β), namely, the value of not attaining the safer
ḡ level in the No-Default region. Finally, the last term shows that the government risks payoff
u (Zy) / (1− β) with probability π when it follows policy T .

If we can find that ∂V T (B0) /∂T is positive for some small π and B0 ∈ (B/ (1− π) , B̄], then
the benefit of delaying exit from the Crisis region is greater than the cost. When this is the case,
there exist other possibilities T > 1 that will increase the government’s payoff when debt lies in
the Crisis region.

Taking the limit on the last expression simplifies to

lim
π→0

∂V T (B0)

∂T
= βT−1 ln (β)

{
β
ugT

(
gT
)

1− βT
(B −B0) +

β

1− β
[
u (ḡ)− u

(
gT (B0)

)]}
.

By Lemma 12, ḡ > gT (B0). Using property of strictly concave functions,

ugT
(
gT
) (
ḡ − gT (B0)

)
> u (ḡ)− u

(
gT (B0)

)
,

and since

ḡ − gT (B0) =
1− β

1− βT
[B0 −B] ,

then

ugT
(
gT
)( 1− β

1− βT

)
[B0 −B] > u (ḡ)− u

(
gT (B0)

)
.

Multiplying the last expression by ln (β) changes its sign. Rearranging terms in ∂V T (B0) /∂T and
using the last inequality imples

lim
π→0

∂V T (B0)

∂T
= βT−1 ln (β)

{
β
ugT

(
gT
)

1− βT
(B −B0) +

β

1− β
[
u (ḡ)− u

(
gT (B0)

)]}

> βT−1
{

ln (β)
β

1− βT
ugT

(
gT
)

(B −B0) +
β

1− β ln (β)ugT
(
gT
)( 1− β

1− βT

)
[B0 −B]

}
= 0.

Notice then that, for some B0 and π very small, ∂V T (B0) /∂T > 0. Finally, the sign of equations
(29) and (30) implicitly define a positive relation of T in terms of B0, thus proving that T ∗ (B0)
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can take values {1, 2, ...,∞} for small values of π, as B0 increases in
[
B, B̄ (π)

]
.

7.3.10 Relation between gT (B0) and gT+1 (B0)

Claim 13 If B0 > B/ (1− π), then gT (B0) < gT+1 (B0).

Proof. Be gT (B0) < gT+1 (B0). Then

y −
[

1− β̂
1− β̂T

]
B0 +

[
1− β̂

1− β̂T

]
β̂
T−1

βB < y −
[

1− β̂
1− β̂T+1

]
B0 +

[
1− β̂

1− β̂T+1

]
β̂
T
βB.

After rearranging terms,

0 < β̂
T−1 (

B0β̂ − βB
)
,

and this inequality holds only if the term in parenthesis is positive, what, in turn, implies that
B0 > B/ (1− π).

7.3.11 Comparative statics (region boundaries with respect to Z)

Proof of Proposition 3. From equation 10 we can write

G (y, Z, β,B) =
u (Zy)

1− β − u (y −B)− β u (y)

1− β = 0,

and after applying the implicit function theorem, we get

∂B

∂Z
= −

u′(Zy)
1−β y

u′ (y −B)
< 0.

Assuming that V∞ dominates any other V T when π is positive, we can write equation (15) as

F
(
y, Z, β, πB̄

)
=
u
(
y −

(
1− β̂

)
B̄
)

1− β̂
+

βπu (Zy)(
1− β̂

)
(1− β)

− u
(
Zy + β̂B̄

)
− βu (Zy)

1− β = 0.

Using the implicit function theorem we get

∂B̄

∂Z
= −

−
(
β u
′(Zy)y
1−β

[
1− π

1−β̂

]
+ u′

(
Zy + β̂B̄

)
y
)

−
(
u′
(
y −

(
1− β̂

)
B̄
)

+ u′
(
Zy + β̂B̄

)
β̂
) ,

and since the term in square brackets in the numerator is positive for any π ∈ (0, 1), then ∂B̄/∂Z <
0.

If the government lowers debt in T = 1 period,

V 1 (B0) = u (y −B0 + βB) + β
u (y − (1− β)B)

1− β ,

and
∂V 1

∂Z
= β

∂B

∂Z

[
u′ (g0)− u′ (ḡ)

]
.
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Given that ∂B/∂Z < 0, and since g0 < ḡ (Lemma 12) implies that u′ (g0) > u′ (ḡ), then ∂V 1/∂Z <
0.

Finally, it follows immediately from V∞ that

∂V∞ (B0)

∂Z
=

βπu (Zy)(
1− β̂

)
(1− β)

y > 0.
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Appendix B - Long-term debt

7.4 Determination of the equilibrium price
If the government is in the No-Default zone, then it never defaults (z′ = 1) and price is stationary
(q = q′). Hence

q
(
s,B′

)
= βE

[
z′
(
1 + q′δ

)]
⇒ q

(
s,B′

)
=

β

1− βδ
If price were stationary in the Crisis region, then government defaults with probability π,

and otherwise it repays with probability 1 − π. Therefore, the equilibrium price is now q =
β [(1− π) (1 + qδ) + π (0)] and yields

q =
β (1− π)

1− β (1− π) δ
=

β̂

1− β̂δ

where we defined β̂ = β (1− π).
Finally, if debt is lowered in T periods, the equilibrium price can be built with the following

procedure. We start with T = 1 and use a backward induction logic. Conditional on no previous
default, the government will reach the No-Default region in t = 1, and the stationary price is
q11 = β/ (1− βδ). At the initial period t = 0, the q10 comes defined as

q10 = βE
[
z′
(
1 + q11δ

)]
.

and, after plugging the previous result, we obtain that q10 = q11 = β/ (1− βδ). Assume that T = 2;
then prices in each period are

q20 = βE
[
z′
(
1 + q21δ

)]
⇒ q20 = β

[
(1− π)

(
1 + q21δ

)]
q21 = βE

[
z′
(
1 + q22δ

)]
⇒ β

(
1 + q22δ

)
q22 =

β

1− βδ .

Then, q22 = q21 = β/ (1− βδ), and
q20 = β̂ + β̂δ

β

1− βδ .

Since q22 = q21 also occurs when T = 1 (namely, that q11 = q10), we can already identify that q
T
t−1 = qTt ;

i.e., that qTt = β/ (1− βδ) when t ≥ T − 1.
We do the same analysis when T = 3, with the only difference that we now disregard q33 since

it will be equal to q32. Therefore,

q30 = βE
[
z′
(
1 + q31δ

)]
= β

[
(1− π)

(
1 + q31δ

)]
q31 = βE

[
z′
(
1 + q32δ

)]
= β

[
(1− π)

(
1 + q32δ

)]
q32 = βE

[
z′
(
1 + q33δ

)]
= β

(
1 + q33δ

)
.

After some algebra, this results in q32 = β/ (1− βδ), q31 = β̂ + β̂δβ/ (1− βδ), and q30 = β̂(1 + β̂δ) +
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(β̂δ)2β/ (1− βδ). Finally, this allows us to identify that

qT0 = β̂

(
T−2∑
k=0

(
β̂δ
)k)

+
(
β̂δ
)T−1( β

1− βδ

)
,

and, therefore, the equilibrium price is

qTt =


(

1−
(
β̂δ
)T−1−t)(

β̂

1−β̂δ

)
+
(
β̂δ
)T−1−t (

β
1−βδ

)
t < T − 1

β
1−βδ t ≥ T − 1

7.5 Value of repayment and determination of the lower bound of
the Crisis region under long-term debt

7.5.1 Value of repayment when the credit market freezes for a finite number of
periods

We need two results to derive V R under long-term debt.11 Claim 14 states that the government
chooses a constant level of spending when there is no probability of default (i.e., π = 0). Claim 15
states that if government spending is constant, the path {Bt+1} is constant.

Claim 14 If π = 0, then government spending is constant.

Proof. When π = 0, the equilibrium price of a riskless bond is fixed and equal to q = β/ (1− βδ).
Hence, the per-period budget constraint is

gt +Bt = y +
β

1− βδ (Bt+1 − δBt)⇒ gt = y +
β

1− βδBt+1 −
1

1− βδBt,

and the government chooses the sequence {Bt+1}∞t=0 that solves

max
∞∑
t=0

βtu (gt)

s.t. gt = y + β
1−βδBt+1 −

1
1−βδBt ∀t ≥ 0

Bt = B given, and B ≤ B
Bt+1 ≤ B ∀t ≥ 0.

First-order and transversality conditions yield

βtu′ (gt)

[
β

1− βδ

]
+ βt+1u′ (gt+1)

[
− 1

1− βδ

]
= 0

lim
s→∞

βsλsBs+1 = 0.

From the first expression we obtain that u′ (gt) = u′ (gt+1), implying that government spending is
constant.

Claim 15 If gt is constant and initial debt B0 is riskless, then Bt = B0 for every t.

11These results particularize intermediate steps in Claim 7 for long-term debt.
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Proof. Take

gt = y +
β

1− βδBt+1 −
1

1− βδBt

gt+1 = y +
β

1− βδBt+2 −
1

1− βδBt+1.

Using that gt = gt+1 from Claim 14 leads to

Bt+2 −Bt+1 =
1

β
(Bt+1 −Bt) .

By a logic similar to Claim 7, we can argue that Bt+1 = Bt for every t.
We can now build the value of repayment when the credit market freezes for T periods.

Claim 16 The value of repayment when the market freezes for T periods is given by

V R (B0, δ) =

∞∑
t=0

βtu (gt) s.t. gt =

{
y − δTB0 t = T

y − 1−β
1−βδ δ

TB0 t > T

Proof. In this problem, we are looking for the highest B0 such that the government does not
default in the No-Default region (i.e., when π = 0). Hence, we divide the problem in two parts.
The first part is the government problem when the market freezes lending for T periods, namely,
for t = 0, 1, ..., T − 1. The second part is when the market resumes lending for t = T, T + 1, ....
We use a backward induction logic, starting from the second problem and then moving to the first
problem.

Starting at t ≥ T , by Claim 14 the government spending is constant in every period. Also,
Claim 15 implies that debt is constant and equal to the debt level at the initial period. Since the
initial period in this problem is the date when the credit market resumed lending (t = T ), then
debt will be constant at Bt = BT . Therefore, government spending will be equal to

g = y − 1− β
1− βδBT ,

and the value after the market resumes lending is

u
(
y − 1−β

1−βδBT
)

1− β .

In the first part of the problem, there is no lending for t = 0, 1, ..., T − 1 periods. Since the
government collects nothing from its issuances, it = 0 implies Bt+1 = δBt t = 0, ..., T − 1. The
iteration of the last expression yields Bt = δtB0. Finally, the government’s payoff in the first
problem is

T−1∑
t=0

βtu
(
y − δtB0

)
,

and the government value of repayment when there is a T -period market freeze is

V R (B0, δ) =
T−1∑
t=0

βtu
(
y − δtB0

)
+ βT

u
(
y − 1−β

1−βδ δ
TB0

)
1− β .
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It is worth noting that after a market freeze, lending resumes. But the government has already
achieved a lower level of debt, and by Claim 15 it will keep that level constant. Since the level of
debt was the highest at the initial period, then if the government has not defaulted before, it will
surely not default after lending resumes. Therefore, we can use this value of repayment to compare
it later against the value of default at equality, in order to characterize the highest B.

7.5.2 Determination of the lower bound of the crisis region

Having identified the No-Lending Condition under long-term debt, we now prove that there exists
a unique solution such that the equation holds with equality under a one-period market freeze.

Lemma 17 When T = 1, there exists a unique B that is solution to

u (Zy)

1− β = u (y −B) + β
u
(
y − 1−β

1−βδ δB
)

1− β

Proof. We start building

F (B;Z, y, β, δ) =
u (Zy)

1− β − u (y −B)− β
u
(
y − 1−β

1−βδ δB
)

1− β = 0

Provided that (i) F (0; ·) = 1
1−β [u (Zy)− u (y)] < 0, (ii) F (B → y; ·) = u (Zy) / (1− β) − u (0) −

βu (y (1− δ) / (1− βδ)) / (1− β)→∞, and (iii) F ′ (B) = u′ (y −B)+δβu′ (y − δB (1− β) / (1− βδ))
/ (1− βδ) > 0, then we are guaranteed that a maximum B (Z, y, β, δ) > 0 exists and is unique.

7.6 Determination of the upper bound of the Crisis region
7.6.1 Optimal policy in the No-Default region under long-term debt

Claim 18 (Long-term debt) If π = 0 and given an initial debt Bt′ = B ≤ B, then government
spending is constant and equal to

g = y −B
(

1− β
1− βδ

)
,

and government debt Bs+1 equals the initial debt Bt′ for s ≥ t′.

Proof. This problem is identical to the government problem in Claim 14 (which we can particularize
for any t = t′ instead of t = 0 as in Claim 7). Moreover, we can use the result in Claim 15 to
establish that debt is constant and equal to the initial debt. After setting a constant g and B in
the budget constraint, the optimal government spending is

g = y −
(

1− β
1− βδ

)
B0.
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7.6.2 General problem when debt is lowered in T periods (long-term debt)

The government problem can be written as

V T (B0, δ) = max
{Bt+1}T−1t=0

T−1∑
t=0

β̂
t
u
(
y −Bt

(
1 + δqTt

)
+ qTt Bt+1

)
+β̂

T−1
u
(
y −BT−1

(
1 + δqTT−1

)
+ qTT−1B

)
+

[
1− β̂T−1

1− β̂

]
βπ

u (Zy)

1− β + β̂
T−1

β
u
(
y −

(
1−β
1−βδ

)
B
)

1− β

subject to

qTt = βE
[
zt+1

(
1 + qTt+1δ

)]
, z−1 = 1

B0, B given.

The first-order condition yields

u′ (gt) = u′ (gt+1)
β̂
(
1 + δqTt+1

)
qTt

Given that B0 is in the Crisis region, and since every debt level {Bt+1} lies on it while the govern-
ment plans to exit the region in T periods,12 the equilibrium price relationship qTt = β̂

(
1 + δqTt+1

)
holds, and as a result we have

u′ (gt) = u′ (gt+1)⇒ gt = gt+1

7.6.3 Expression for gT (B0, δ)

We assume that the government is in the crisis region (B > B), and use every budget constraint
when z = 1. Writing gT (B0 , δ) ≡ gT yields

gT +Bt = y + qTt (Bt+1 −Btδ) .

We initially solve for B0 for different T schemes in order to identify a pattern. After that, we
calculate a general formula for gT .

When T = 2, the budget constraints during the transition are

g2 +B0 = y + q20 (B1 −B0δ)⇒ B0 =
y − g2
1 + q20δ

+
q20

1 + q20δ
B1

g2 +B1 = y + q21 (B −B1δ)⇒ B1 =
y − g2
1 + q21δ

+
q21

1 + q21δ
B.

And after plugging B1 into B0,

B0 =
y − g2
1 + q20δ

[
1 +

q20
1 + q21δ

]
+

q20
1 + q20δ

q21
1 + q21δ

B.

12If not, exit from the Crisis region would have occured for some Bt+1 in the optimal sequence, contra-
dicting the fact that the government exits in T .
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Doing the similar proces for T = 3 and T = 4, we obtain that

B0 =
y − g3
1 + q30δ

[
1 +

q30
1 + q31δ

+
q30

1 + q31δ

q31
1 + q32δ

]
+

q30
1 + q30δ

q31
1 + q31δ

q32
1 + q32δ

B

B0 =
y − g4
1 + q40δ

[
1 +

q40
1 + q41δ

+
q40

1 + q41δ

q41
1 + q42δ

+
q40

1 + q41δ

q41
1 + q42δ

q42
1 + q43δ

]
+

q40
1 + q40δ

q41
1 + q41δ

q42
1 + q42δ

q43
1 + q43δ

B.

Hence, for any T we have that

B0 =
y − gT

1 + qT0 δ

1 +

T−2∑
k=0

T−2−k∏
j=0

qTj

T−1−k∏
j=1

(
1 + qTj δ

)
+

T−1∏
j=0

qTj

T−1∏
j=0

(
1 + qTj δ

)B,
and after solving for gT ,

gT (B0, δ) = y −
(
1 + qT0 δ

)
B0 −

T−1∏
j=0

qTj

T−1∏
j=0

(
1 + qTj δ

)B

1 +

T−2∑
k=0

T−2−k∏
j=0

qTj

T−1−k∏
j=1

(
1 + qTj δ

)

−1

.

7.6.4 The upper bound of the Crisis region when π = 0

Lemma 19 Suppose that π → 0, and consider V∞ (B0, δ)− V T (B0, δ), where δ > 0. Then,

V∞ (B0, δ)− V T (B0, δ) > 0

for every T <∞.

Proof. We use the formula for the prices under long-term debt, qTt . As π tends to 0, each β̂ term
is equal to β, and therefore, qTt = β/ (1− βδ). Labelling qTt ≡ q and plugging it into our expression
for gT (B, δ), we get that

gT (B0, δ) = y − (1 + qδ)

[
B0 −

(
q

1 + qδ

)T
B

] 1− q
1+qδ

1−
(

q
1+qδ

)T
 .

Since 1 + qδ = 1/ (1− βδ) and q = β (1 + qδ), then

gT (B0, δ) = y −
[

1− β
1− βT

] [
B0 − βTB

]( 1

1− βδ

)
,

(and it is straightforward to observe that δ = 0 leads to the same expression as our former
gT (B, 0) ≡ gT (B)).
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Equation V∞ (B0, δ)− V 1 (B0, δ) is equal to

1

1− β

[
u

(
y − 1− β

1− βδB0
)
− (1− β)u

(
y − B0

1− βδ +
βB

1− βδ

)
+ βu

(
y − 1− β

1− βδB
)]
.

Since the argument of the first term is equal to the (convex combination) of the second and
third terms’ arguments, we use strict concavity in u (·) with Jensen’s inequality to obtain that
V∞ (B0, δ)− V 1 (B0, δ) > 0. Equation V∞ (B0, δ)− V T (B0, δ) when T ≥ 2 yields

V∞ (B0, δ)− V T (B0, δ) =
1

1− β [u

(
y − 1− β

1− βδB0
)
−
[
1− βT

]
u
(
gT (B0, δ)

)
−βTu

(
y −

(
1− β
1− βδ

)
B

)
],

and provided that
(
1− βT

)
gT (B0, δ)+β

T [y − ((1− β) / (1− βδ))B] equals y−[(1− β) / (1− βδ)]B0,
then strict concavity and Jensen’s inequality proves that the difference is strictly positive for any
debt level.

Lemma 20 There exists a unique B̄ that solves

u
(
y − 1−β

1−βδ B̄
)

1− β = u

(
Zy +

β

1− βδ B̄
)

+ β
u (Zy)

1− β

Proof. We define the following function

H (B;β, y, Z, δ) =
u
(
y − 1−β

1−βδ B̄
)

1− β − u
(
Zy +

β

1− βδ B̄
)
− βu (Zy)

1− β = 0

Given that (i) H (0; ·) = 1
1−β [u (y)− u (Zy)] > 0, (ii) u (0) / (1− β) − u (Zy + yβ/ (1− β)) −

βu (Zy) /
(1− β) → −∞, and (iii) ∂H (B; ·) /∂B = −u′

(
y − B̄ (1− β) / (1− βδ)

)
/ (1− βδ)−

u′
(
Zy + B̄β/ (1− βδ)

)
(β/ (1− βδ)) < 0, then there exists a unique B̄ such that the PC is satisfied

with equality at π → 0.

7.6.5 Figure 6

Using the PC and the NLC, define the Uπ=0PC (B; δ) ≡ UPC (B; δ) and Uπ=0NLC (B; δ) ≡ UNLC (B; δ)
curves as

UPC (B; δ) =
u
(
y − 1−β

1−βδ B̄
)

1− β − u
(
Zy +

β

1− βδ B̄
)
− βu (Zy)

1− β

UNLC (B; δ) = u (y −B) + β
u
(
y − 1−β

1−βδ δB
)

1− β − u (Zy)

1− β .

Using the same properties as in Lemmas 17 and 20, then it is straightforward that (i) UPC (B; δ) =
UNLC (B) > 0 at B = 0, (ii) UPC (B; δ)→ −∞ as B → y (1− βδ) / (1− β) and UNLC (B; δ)→ −∞
as B → y, and (iii) both U ′PC (B; δ) < 0 and U ′NLC (B) < 0. This describes the entire behavior of
the curves in Figure 6. The behavior of Uπ>0PC (B; δ) is the only relevant for this graph —UNLC (B; δ)
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is independent of π. However, we can again invoke Lemma 21 to argue that (i) Uπ>0PC (0; δ) > 0, (ii)

Uπ>0PC (B; δ) < 0 as B → y
(

1− β̂δ
)
/ (1− βδ), and (iii) U ′π>0PC (B; δ) < 0.

7.6.6 The upper bound of the Crisis region when π = 0

Lemma 21 There exists a unique B̄ (δ) that solves

u
(
y −B

[
1−β̂
1−β̂δ

])
1− β̂

+
βπu (Zy)(

1− β̂
)

(1− β)
= u

(
Zy +

β̂

1− β̂δ
B

)
+ β

u (Zy)

1− β

Proof. With a similar logic as before, we define

H̃ (B;β, y, Z, π, δ) =
u
(
y −B

[
1−β̂
1−β̂δ

])
1− β̂

+
βπu (Zy)(

1− β̂
)

(1− β)
− u

(
Zy +

β̂

1− β̂δ
B

)
− βu (Zy)

1− β .

Given that (i) H̃ (0; ·) = [u (y)− u (Zy)] /(1 − β̂) > 0, (ii) H̃(B → y(1 − β̂δ)/(1 − β̂); ·) =
u (0) /(1− β̂) +βπu (Zy) /[(1− β̂) (1− β)]−u(Zy+ yβ̂/(1− β̂))−βu (Zy) (1−β)→ −∞, and (iii)
dH̃ (B; ·) /dB = −u(y −B(1− β̂)/(1− β̂δ))/(1− β̂δ)− u(Zy +Bβ̂/(1− β̂δ))β̂/(1− β̂δ) < 0, then
there exists a positive and unique B̄ (β, y, Z, π, δ) that satisfies the PC with equality.

7.7 Welfare analysis results
7.7.1 Proposition 3

Proof of Proposition 3. We rewrite equation (24) in terms of total outstanding debt and define

H =
u (Zy)

1− β − u (y − (1− δ)B)− β
u
(
y − 1−β

1−βδ δ (1− δ)B
)

1− β ,

to apply the implicit function theorem. Therefore,

dH

dB
= (1− δ)u′ (y − (1− δ)B) + βu′

(
y − 1− β

1− βδ δ (1− δ)B
)(

δ (1− δ)
1− βδ

)
,

and
dH

dδ
= −B

[
u′ (y − (1− δ)B)− βu′

(
y − 1− β

1− βδ δ (1− δ)B
)[

1− 2δ + βδ2

(1− βδ)2

]]
.

The first derivative is positive. Also, expression y − (1− δ)B < y − (1− β) δ (1− δ)B/ (1− βδ)
for every δ ∈ (0, 1), and then u′ (y − (1− δ)B) > u′ (y − (1− β) δ (1− δ)B/ (1− βδ)). Since the
inner-most term in brackets is strictly less than 1, the outer-most expression in brackets is positive.
Therefore, dH/dδ < 0. As a result, dB/dδ = − (dH/dδ) / (dH/dB) > 0.

Using equation (27), we also rewrite it in terms of total outstanding debt to get

G =
u
(
y − 1−β̂

1−β̂δ (1− δ) B̄
)

1− β̂
+

βπ

1− β̂
u (Zy)

1− β − u
(
Zy +

β̂

1− β̂δ
(1− δ) B̄

)
− βu (Zy)

1− β = 0.
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Applying the implicit function theorem,

dG

dB
= −u′

(
y − 1− β̂

1− β̂δ
(1− δ) B̄

)(
1− δ

1− β̂δ

)
− u′

(
Zy +

β̂

1− β̂δ
(1− δ) B̄

)(
β̂ (1− δ)
1− β̂δ

)
< 0

and

dG

dδ
=
u′
(
y − 1−β̂

1−β̂δ (1− δ) B̄
)

1− β̂
B̄

(
1− β̂
1− β̂δ

)2
+ u′

(
Zy +

β̂

1− β̂δ
(1− δ) B̄

) β̂B̄
(

1− β̂
)

(
1− β̂δ

)2
 > 0

result in dB̄/dδ = − (dG/dδ) /
(
dG/dB̄

)
> 0.

7.7.2 Figure 9

Under short-term debt, Figure 10 graphically shows the envelope function V̂ (solid line) that results
from the value function V 5 (B0) (dotted line). Specifically, the government chooses T (B0) = 5
approximately when B̂ ∈ (10.23, 10.38). In this interval of total debt levels B̂, the envelope function
V̂ (B0) matches V 5 (B0); after that interval the government switches to policy T (B0) = 6, making
V̂ (B0) lie strictly above V 5 (B0).
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The same mechanics applies for the envelope function under long-term debt. The next figure
illustrates the maximum payoff that the government attains when it follows the optimal strategies
prescribed under equilibrium. Specifically, we concentrate in the value that the government obtains
in the No-Default and the Crisis region. Notice first that we can disregard the value that the
government obtains in the Default region because when the government starts with initial debt
B > B̄, the definition of a sunspot equilibrium prescribes that creditors will not lend money. As
a result, the price q drops to 0, and the government defaults and gets V D = u (Zy) / (1− β) for
every debt level B ≥ B̄, both under short-term and long-term debt. If we can show that in the
Crisis region the envelope under long-term debt is above the envelope under short-term debt, then
we can rule out any possibility that the economy attains a higher utility in the Default region when
δ = 0.

With this logic, we can numerically prove that welfare under long-term debt is greater compared
to short-term debt by showing that (i) in the No-Default region, the government attains a higher
utility under long-term debt when it smooths spending, and (ii), in the Crisis region, the envelope
of the family of value functions under long-term debt is always above the envelope under short-term
debt.
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Figure 11 proves that welfare under long-term debt is greater than under short-term debt. In
particular, points (1) and (2) indicate a change in the optimal government policy coming from a
switch between regions. For the short-term debt case, as B increases, (1) shows the change in the
government’s payoff when it switches from a policy of keeping a constant level of total debt to a
policy of lowering debt in T periods when π > 0. Similarly, (2) has the same interpretation for
long-term debt bonds.

In the No-Default region, both government value functions start at the same value when B = 0.
As B increases, the optimal government spending starts to decrease, making V (B; δ = 0) decline
more than V (B; δ > 0). Intuitively, when total outstanding debt increases, a higher δ allocates
maturing debt in several periods versus one-period bonds. As a result, when the maturing debt
that the government rolls over is a portion of the total amount of debt (i.e., δ > 0), the constant
spending attained ḡ is greater compared to the case where maturing debt is the total amount of
debt in every period (i.e., δ = 0).

In the Crisis region, we numerically obtain that the envelope of the family of V T curves under
long-term debt (built with the logic of Figure 10) is strictly greater than the envelope of curves
V T under short-term debt. In the main text, we describe that when δ > 0, the government gains
come from (i) the faster decline of debt that decreases the likelihood of self-fulfilling debt crises,
and (ii) the lower discount of the payoff under smooth spending u (ḡ) (conditional on the sunspot
not triggering default), associated to the faster policy in (i).

Figure 12 and 13 illustrate other examples of welfare improvement under a higher maturity of
debt, when creditors’belief of government default increases from π = 0.0001 to π = 0.001 and
π = 0.01.13 In order to have a Crisis region where the optimal choice of T varies when π = 0.01, we
changed the default penalty from Z = 0.9 to Z = 0.86. Notice also that these figures illustate the

13In our numerical example, a belief π = 0.01 is half of the probability of default specified in Cole and
Kehoe (1996). For another specifications on π, see also Conesa and Kehoe (2017).
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envelopes of the value functions for a portion of the Crisis region, specifically when T ∗ (B0) = 1.
However, when considering a greater range of B, the envelope of δ = 0 switches to T ∗ (B0) = 2
before δ = 0.1 and δ = 0.2 —and the same happens for δ = 0.1 compared to δ = 0.2.
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As Figure 12 and 13 show, there is a welfare improvement when δ rises, showing that the
findings hold when beliefs rise.
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